x uchun yechish
x = \frac{\sqrt{145} + 1}{12} \approx 1,086799548
x=\frac{1-\sqrt{145}}{12}\approx -0,920132882
Grafik
Baham ko'rish
Klipbordga nusxa olish
x=\frac{6}{6x}+\frac{x}{6x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va 6 ning eng kichik umumiy karralisi 6x. \frac{1}{x} ni \frac{6}{6} marotabaga ko'paytirish. \frac{1}{6} ni \frac{x}{x} marotabaga ko'paytirish.
x=\frac{6+x}{6x}
\frac{6}{6x} va \frac{x}{6x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
x-\frac{6+x}{6x}=0
Ikkala tarafdan \frac{6+x}{6x} ni ayirish.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{6x}{6x} marotabaga ko'paytirish.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
\frac{x\times 6x}{6x} va \frac{6+x}{6x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{6x^{2}-6-x}{6x}=0
x\times 6x-\left(6+x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
\frac{6x^{2}-6-x}{6x} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145}+\frac{1}{12} teskarisini topish uchun har birining teskarisini toping.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145} ning teskarisi \frac{1}{12}\sqrt{145} ga teng.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
\frac{1}{12}\sqrt{145}+\frac{1}{12} teskarisini topish uchun har birining teskarisini toping.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
x+\frac{1}{12}\sqrt{145}-\frac{1}{12} ifodaning har bir elementini x-\frac{1}{12}\sqrt{145}-\frac{1}{12} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
145 hosil qilish uchun \sqrt{145} va \sqrt{145} ni ko'paytirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ni olish uchun x\left(-\frac{1}{12}\right)\sqrt{145} va \frac{1}{12}\sqrt{145}x ni birlashtirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145}{12} hosil qilish uchun \frac{1}{12} va 145 ni ko'paytirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{145}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-145}{144} kasri manfiy belgini olib tashlash bilan -\frac{145}{144} sifatida qayta yozilishi mumkin.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{1\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-1}{144} kasri manfiy belgini olib tashlash bilan -\frac{1}{144} sifatida qayta yozilishi mumkin.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
-\frac{1}{6}x ni olish uchun x\left(-\frac{1}{12}\right) va -\frac{1}{12}x ni birlashtirish.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ni olish uchun -\frac{1}{144}\sqrt{145} va \frac{1}{144}\sqrt{145} ni birlashtirish.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
\frac{-\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
-\frac{145}{144} va \frac{1}{144} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
-144 olish uchun -145 va 1'ni qo'shing.
x^{2}-\frac{1}{6}x-1=0
-1 ni olish uchun -144 ni 144 ga bo‘ling.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\left(-\frac{1}{6}\right)^{2}-4\left(-1\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{1}{6} ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}-4\left(-1\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{1}{36}+4}}{2}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{6}\right)±\sqrt{\frac{145}{36}}}{2}
\frac{1}{36} ni 4 ga qo'shish.
x=\frac{-\left(-\frac{1}{6}\right)±\frac{\sqrt{145}}{6}}{2}
\frac{145}{36} ning kvadrat ildizini chiqarish.
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2}
-\frac{1}{6} ning teskarisi \frac{1}{6} ga teng.
x=\frac{\sqrt{145}+1}{2\times 6}
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} tenglamasini yeching, bunda ± musbat. \frac{1}{6} ni \frac{\sqrt{145}}{6} ga qo'shish.
x=\frac{\sqrt{145}+1}{12}
\frac{1+\sqrt{145}}{6} ni 2 ga bo'lish.
x=\frac{1-\sqrt{145}}{2\times 6}
x=\frac{\frac{1}{6}±\frac{\sqrt{145}}{6}}{2} tenglamasini yeching, bunda ± manfiy. \frac{1}{6} dan \frac{\sqrt{145}}{6} ni ayirish.
x=\frac{1-\sqrt{145}}{12}
\frac{1-\sqrt{145}}{6} ni 2 ga bo'lish.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
Tenglama yechildi.
x=\frac{6}{6x}+\frac{x}{6x}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x va 6 ning eng kichik umumiy karralisi 6x. \frac{1}{x} ni \frac{6}{6} marotabaga ko'paytirish. \frac{1}{6} ni \frac{x}{x} marotabaga ko'paytirish.
x=\frac{6+x}{6x}
\frac{6}{6x} va \frac{x}{6x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
x-\frac{6+x}{6x}=0
Ikkala tarafdan \frac{6+x}{6x} ni ayirish.
\frac{x\times 6x}{6x}-\frac{6+x}{6x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x ni \frac{6x}{6x} marotabaga ko'paytirish.
\frac{x\times 6x-\left(6+x\right)}{6x}=0
\frac{x\times 6x}{6x} va \frac{6+x}{6x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{6x^{2}-6-x}{6x}=0
x\times 6x-\left(6+x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{6\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{6x}=0
\frac{6x^{2}-6-x}{6x} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)}{x}=0
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\left(x-\left(-\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(x-\left(-\frac{1}{12}\sqrt{145}\right)-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145}+\frac{1}{12} teskarisini topish uchun har birining teskarisini toping.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\left(\frac{1}{12}\sqrt{145}+\frac{1}{12}\right)\right)=0
-\frac{1}{12}\sqrt{145} ning teskarisi \frac{1}{12}\sqrt{145} ga teng.
\left(x+\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)\left(x-\frac{1}{12}\sqrt{145}-\frac{1}{12}\right)=0
\frac{1}{12}\sqrt{145}+\frac{1}{12} teskarisini topish uchun har birining teskarisini toping.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)\sqrt{145}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
x+\frac{1}{12}\sqrt{145}-\frac{1}{12} ifodaning har bir elementini x-\frac{1}{12}\sqrt{145}-\frac{1}{12} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
x^{2}+x\left(-\frac{1}{12}\right)\sqrt{145}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}x+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
145 hosil qilish uchun \sqrt{145} va \sqrt{145} ni ko'paytirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{1}{12}\times 145\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ni olish uchun x\left(-\frac{1}{12}\right)\sqrt{145} va \frac{1}{12}\sqrt{145}x ni birlashtirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145}{12}\left(-\frac{1}{12}\right)+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145}{12} hosil qilish uchun \frac{1}{12} va 145 ni ko'paytirish.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{145\left(-1\right)}{12\times 12}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{145}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}+x\left(-\frac{1}{12}\right)+\frac{-145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{145\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1}{12}\sqrt{145}\left(-\frac{1}{12}\right)-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-145}{144} kasri manfiy belgini olib tashlash bilan -\frac{145}{144} sifatida qayta yozilishi mumkin.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{1\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}+\frac{-1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{1\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}+x\left(-\frac{1}{12}\right)-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}x-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-1}{144} kasri manfiy belgini olib tashlash bilan -\frac{1}{144} sifatida qayta yozilishi mumkin.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
-\frac{1}{6}x ni olish uchun x\left(-\frac{1}{12}\right) va -\frac{1}{12}x ni birlashtirish.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{-\left(-1\right)}{12\times 12}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{144}\sqrt{145}+\frac{1}{144}\sqrt{145}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
\frac{-\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}-\frac{1}{6}x-\frac{145}{144}-\frac{1}{12}\left(-\frac{1}{12}\right)=0
0 ni olish uchun -\frac{1}{144}\sqrt{145} va \frac{1}{144}\sqrt{145} ni birlashtirish.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{-\left(-1\right)}{12\times 12}=0
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{12} ni -\frac{1}{12} ga ko‘paytiring.
x^{2}-\frac{1}{6}x-\frac{145}{144}+\frac{1}{144}=0
\frac{-\left(-1\right)}{12\times 12} kasridagi ko‘paytirishlarni bajaring.
x^{2}-\frac{1}{6}x+\frac{-145+1}{144}=0
-\frac{145}{144} va \frac{1}{144} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
x^{2}-\frac{1}{6}x+\frac{-144}{144}=0
-144 olish uchun -145 va 1'ni qo'shing.
x^{2}-\frac{1}{6}x-1=0
-1 ni olish uchun -144 ni 144 ga bo‘ling.
x^{2}-\frac{1}{6}x=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=1+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{12} olish uchun. Keyin, -\frac{1}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{6}x+\frac{1}{144}=1+\frac{1}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{12} kvadratini chiqarish.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{145}{144}
1 ni \frac{1}{144} ga qo'shish.
\left(x-\frac{1}{12}\right)^{2}=\frac{145}{144}
x^{2}-\frac{1}{6}x+\frac{1}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{145}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{12}=\frac{\sqrt{145}}{12} x-\frac{1}{12}=-\frac{\sqrt{145}}{12}
Qisqartirish.
x=\frac{\sqrt{145}+1}{12} x=\frac{1-\sqrt{145}}{12}
\frac{1}{12} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}