x uchun yechish
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x=\frac{1}{3}x+\frac{1\times 1}{2\times 3}x+\frac{1}{2}\times \frac{1}{2}\times \frac{1}{3}x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{3} ga ko‘paytiring.
x=\frac{1}{3}x+\frac{1}{6}x+\frac{1}{2}\times \frac{1}{2}\times \frac{1}{3}x
\frac{1\times 1}{2\times 3} kasridagi ko‘paytirishlarni bajaring.
x=\frac{1}{2}x+\frac{1}{2}\times \frac{1}{2}\times \frac{1}{3}x
\frac{1}{2}x ni olish uchun \frac{1}{3}x va \frac{1}{6}x ni birlashtirish.
x=\frac{1}{2}x+\frac{1\times 1}{2\times 2}\times \frac{1}{3}x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{2} ga ko‘paytiring.
x=\frac{1}{2}x+\frac{1}{4}\times \frac{1}{3}x
\frac{1\times 1}{2\times 2} kasridagi ko‘paytirishlarni bajaring.
x=\frac{1}{2}x+\frac{1\times 1}{4\times 3}x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{4} ni \frac{1}{3} ga ko‘paytiring.
x=\frac{1}{2}x+\frac{1}{12}x
\frac{1\times 1}{4\times 3} kasridagi ko‘paytirishlarni bajaring.
x=\frac{7}{12}x
\frac{7}{12}x ni olish uchun \frac{1}{2}x va \frac{1}{12}x ni birlashtirish.
x-\frac{7}{12}x=0
Ikkala tarafdan \frac{7}{12}x ni ayirish.
\frac{5}{12}x=0
\frac{5}{12}x ni olish uchun x va -\frac{7}{12}x ni birlashtirish.
x=0
Ikki son koʻpaytmasi 0 ga teng, agar kamida bittasi 0 bo‘lsa. \frac{5}{12} 0 ga teng bo‘lmasa, x 0 ga teng bo‘lishi kerak.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}