y uchun yechish
y=-\frac{x+2}{2x+3}
x\neq -\frac{3}{2}
x uchun yechish
x=-\frac{3y+2}{2y+1}
y\neq -\frac{1}{2}
Grafik
Viktorina
Algebra
x = \frac{ -3y-2 }{ 2y+1 }
Baham ko'rish
Klipbordga nusxa olish
x\left(2y+1\right)=-3y-2
y qiymati -\frac{1}{2} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2y+1 ga ko'paytirish.
2xy+x=-3y-2
x ga 2y+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2xy+x+3y=-2
3y ni ikki tarafga qo’shing.
2xy+3y=-2-x
Ikkala tarafdan x ni ayirish.
\left(2x+3\right)y=-2-x
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(2x+3\right)y=-x-2
Tenglama standart shaklda.
\frac{\left(2x+3\right)y}{2x+3}=\frac{-x-2}{2x+3}
Ikki tarafini 2x+3 ga bo‘ling.
y=\frac{-x-2}{2x+3}
2x+3 ga bo'lish 2x+3 ga ko'paytirishni bekor qiladi.
y=-\frac{x+2}{2x+3}
-2-x ni 2x+3 ga bo'lish.
y=-\frac{x+2}{2x+3}\text{, }y\neq -\frac{1}{2}
y qiymati -\frac{1}{2} teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}