x, y uchun yechish
x=60
y=52
Grafik
Baham ko'rish
Klipbordga nusxa olish
13x=15y
Birinchi tenglamani yeching. y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 13y ga, y,13 ning eng kichik karralisiga ko‘paytiring.
x=\frac{1}{13}\times 15y
Ikki tarafini 13 ga bo‘ling.
x=\frac{15}{13}y
\frac{1}{13} ni 15y marotabaga ko'paytirish.
\frac{15}{13}y-y=8
\frac{15y}{13} ni x uchun boshqa tenglamada almashtirish, x-y=8.
\frac{2}{13}y=8
\frac{15y}{13} ni -y ga qo'shish.
y=52
Tenglamaning ikki tarafini \frac{2}{13} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{15}{13}\times 52
52 ni y uchun x=\frac{15}{13}y da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=60
\frac{15}{13} ni 52 marotabaga ko'paytirish.
x=60,y=52
Tizim hal qilindi.
13x=15y
Birinchi tenglamani yeching. y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 13y ga, y,13 ning eng kichik karralisiga ko‘paytiring.
13x-15y=0
Ikkala tarafdan 15y ni ayirish.
13x-15y=0,x-y=8
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\8\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right))\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\8\end{matrix}\right)
\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\8\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}13&-15\\1&-1\end{matrix}\right))\left(\begin{matrix}0\\8\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13\left(-1\right)-\left(-15\right)}&-\frac{-15}{13\left(-1\right)-\left(-15\right)}\\-\frac{1}{13\left(-1\right)-\left(-15\right)}&\frac{13}{13\left(-1\right)-\left(-15\right)}\end{matrix}\right)\left(\begin{matrix}0\\8\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{15}{2}\\-\frac{1}{2}&\frac{13}{2}\end{matrix}\right)\left(\begin{matrix}0\\8\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{2}\times 8\\\frac{13}{2}\times 8\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\52\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=60,y=52
x va y matritsa elementlarini chiqarib olish.
13x=15y
Birinchi tenglamani yeching. y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 13y ga, y,13 ning eng kichik karralisiga ko‘paytiring.
13x-15y=0
Ikkala tarafdan 15y ni ayirish.
13x-15y=0,x-y=8
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
13x-15y=0,13x+13\left(-1\right)y=13\times 8
13x va x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 1 ga va ikkinchining har bir tarafidagi barcha shartlarni 13 ga ko'paytiring.
13x-15y=0,13x-13y=104
Qisqartirish.
13x-13x-15y+13y=-104
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 13x-15y=0 dan 13x-13y=104 ni ayirish.
-15y+13y=-104
13x ni -13x ga qo'shish. 13x va -13x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-2y=-104
-15y ni 13y ga qo'shish.
y=52
Ikki tarafini -2 ga bo‘ling.
x-52=8
52 ni y uchun x-y=8 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=60
52 ni tenglamaning ikkala tarafiga qo'shish.
x=60,y=52
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}