x uchun yechish
x=-\frac{y+z}{1-yz}
z=0\text{ or }y\neq \frac{1}{z}
y uchun yechish
y=-\frac{x+z}{1-xz}
z=0\text{ or }x\neq \frac{1}{z}
Baham ko'rish
Klipbordga nusxa olish
x+y+z-xyz=0
Ikkala tarafdan xyz ni ayirish.
x+z-xyz=-y
Ikkala tarafdan y ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x-xyz=-y-z
Ikkala tarafdan z ni ayirish.
\left(1-yz\right)x=-y-z
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(1-yz\right)x}{1-yz}=\frac{-y-z}{1-yz}
Ikki tarafini 1-yz ga bo‘ling.
x=\frac{-y-z}{1-yz}
1-yz ga bo'lish 1-yz ga ko'paytirishni bekor qiladi.
x=-\frac{y+z}{1-yz}
-y-z ni 1-yz ga bo'lish.
x+y+z-xyz=0
Ikkala tarafdan xyz ni ayirish.
y+z-xyz=-x
Ikkala tarafdan x ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y-xyz=-x-z
Ikkala tarafdan z ni ayirish.
\left(1-xz\right)y=-x-z
y'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(1-xz\right)y}{1-xz}=\frac{-x-z}{1-xz}
Ikki tarafini 1-xz ga bo‘ling.
y=\frac{-x-z}{1-xz}
1-xz ga bo'lish 1-xz ga ko'paytirishni bekor qiladi.
y=-\frac{x+z}{1-xz}
-x-z ni 1-xz ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}