Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+x+7=6
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+x+7-6=6-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x^{2}+x+7-6=0
O‘zidan 6 ayirilsa 0 qoladi.
x^{2}+x+1=0
7 dan 6 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va 1 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4}}{2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{-3}}{2}
1 ni -4 ga qo'shish.
x=\frac{-1±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{-1+\sqrt{3}i}{2}
x=\frac{-1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i-1}{2}
x=\frac{-1±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{3} ni ayirish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglama yechildi.
x^{2}+x+7=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+x+7-7=6-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}+x=6-7
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}+x=-1
6 dan 7 ni ayirish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.