x, y uchun yechish
x=3
y=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
x+3y=6,5x-2y=13
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x+3y=6
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=-3y+6
Tenglamaning ikkala tarafidan 3y ni ayirish.
5\left(-3y+6\right)-2y=13
-3y+6 ni x uchun boshqa tenglamada almashtirish, 5x-2y=13.
-15y+30-2y=13
5 ni -3y+6 marotabaga ko'paytirish.
-17y+30=13
-15y ni -2y ga qo'shish.
-17y=-17
Tenglamaning ikkala tarafidan 30 ni ayirish.
y=1
Ikki tarafini -17 ga bo‘ling.
x=-3+6
1 ni y uchun x=-3y+6 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=3
6 ni -3 ga qo'shish.
x=3,y=1
Tizim hal qilindi.
x+3y=6,5x-2y=13
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3\times 5}&-\frac{3}{-2-3\times 5}\\-\frac{5}{-2-3\times 5}&\frac{1}{-2-3\times 5}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\\frac{5}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 6+\frac{3}{17}\times 13\\\frac{5}{17}\times 6-\frac{1}{17}\times 13\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=3,y=1
x va y matritsa elementlarini chiqarib olish.
x+3y=6,5x-2y=13
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
5x+5\times 3y=5\times 6,5x-2y=13
x va 5x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 5 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
5x+15y=30,5x-2y=13
Qisqartirish.
5x-5x+15y+2y=30-13
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 5x+15y=30 dan 5x-2y=13 ni ayirish.
15y+2y=30-13
5x ni -5x ga qo'shish. 5x va -5x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
17y=30-13
15y ni 2y ga qo'shish.
17y=17
30 ni -13 ga qo'shish.
y=1
Ikki tarafini 17 ga bo‘ling.
5x-2=13
1 ni y uchun 5x-2y=13 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
5x=15
2 ni tenglamaning ikkala tarafiga qo'shish.
x=3
Ikki tarafini 5 ga bo‘ling.
x=3,y=1
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}