Asosiy tarkibga oʻtish
x, y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x+2y=-1,2x-3y=12
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
x+2y=-1
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
x=-2y-1
Tenglamaning ikkala tarafidan 2y ni ayirish.
2\left(-2y-1\right)-3y=12
-2y-1 ni x uchun boshqa tenglamada almashtirish, 2x-3y=12.
-4y-2-3y=12
2 ni -2y-1 marotabaga ko'paytirish.
-7y-2=12
-4y ni -3y ga qo'shish.
-7y=14
2 ni tenglamaning ikkala tarafiga qo'shish.
y=-2
Ikki tarafini -7 ga bo‘ling.
x=-2\left(-2\right)-1
-2 ni y uchun x=-2y-1 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=4-1
-2 ni -2 marotabaga ko'paytirish.
x=3
-1 ni 4 ga qo'shish.
x=3,y=-2
Tizim hal qilindi.
x+2y=-1,2x-3y=12
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\12\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
\left(\begin{matrix}1&2\\2&-3\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1\\12\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 2}&-\frac{2}{-3-2\times 2}\\-\frac{2}{-3-2\times 2}&\frac{1}{-3-2\times 2}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-1\\12\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)+\frac{2}{7}\times 12\\\frac{2}{7}\left(-1\right)-\frac{1}{7}\times 12\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=3,y=-2
x va y matritsa elementlarini chiqarib olish.
x+2y=-1,2x-3y=12
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
2x+2\times 2y=2\left(-1\right),2x-3y=12
x va 2x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 2 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
2x+4y=-2,2x-3y=12
Qisqartirish.
2x-2x+4y+3y=-2-12
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 2x+4y=-2 dan 2x-3y=12 ni ayirish.
4y+3y=-2-12
2x ni -2x ga qo'shish. 2x va -2x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
7y=-2-12
4y ni 3y ga qo'shish.
7y=-14
-2 ni -12 ga qo'shish.
y=-2
Ikki tarafini 7 ga bo‘ling.
2x-3\left(-2\right)=12
-2 ni y uchun 2x-3y=12 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
2x+6=12
-3 ni -2 marotabaga ko'paytirish.
2x=6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x=3
Ikki tarafini 2 ga bo‘ling.
x=3,y=-2
Tizim hal qilindi.