Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

xx+2xx+2=14000x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+2xx+2=14000x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+2x^{2}+2=14000x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3x^{2}+2=14000x
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}+2-14000x=0
Ikkala tarafdan 14000x ni ayirish.
3x^{2}-14000x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14000\right)±\sqrt{\left(-14000\right)^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -14000 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-14000\right)±\sqrt{196000000-4\times 3\times 2}}{2\times 3}
-14000 kvadratini chiqarish.
x=\frac{-\left(-14000\right)±\sqrt{196000000-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-14000\right)±\sqrt{196000000-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-14000\right)±\sqrt{195999976}}{2\times 3}
196000000 ni -24 ga qo'shish.
x=\frac{-\left(-14000\right)±2\sqrt{48999994}}{2\times 3}
195999976 ning kvadrat ildizini chiqarish.
x=\frac{14000±2\sqrt{48999994}}{2\times 3}
-14000 ning teskarisi 14000 ga teng.
x=\frac{14000±2\sqrt{48999994}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{2\sqrt{48999994}+14000}{6}
x=\frac{14000±2\sqrt{48999994}}{6} tenglamasini yeching, bunda ± musbat. 14000 ni 2\sqrt{48999994} ga qo'shish.
x=\frac{\sqrt{48999994}+7000}{3}
14000+2\sqrt{48999994} ni 6 ga bo'lish.
x=\frac{14000-2\sqrt{48999994}}{6}
x=\frac{14000±2\sqrt{48999994}}{6} tenglamasini yeching, bunda ± manfiy. 14000 dan 2\sqrt{48999994} ni ayirish.
x=\frac{7000-\sqrt{48999994}}{3}
14000-2\sqrt{48999994} ni 6 ga bo'lish.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
Tenglama yechildi.
xx+2xx+2=14000x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+2xx+2=14000x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+2x^{2}+2=14000x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3x^{2}+2=14000x
3x^{2} ni olish uchun x^{2} va 2x^{2} ni birlashtirish.
3x^{2}+2-14000x=0
Ikkala tarafdan 14000x ni ayirish.
3x^{2}-14000x=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{3x^{2}-14000x}{3}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{14000}{3}x=-\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{14000}{3}x+\left(-\frac{7000}{3}\right)^{2}=-\frac{2}{3}+\left(-\frac{7000}{3}\right)^{2}
-\frac{14000}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7000}{3} olish uchun. Keyin, -\frac{7000}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=-\frac{2}{3}+\frac{49000000}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7000}{3} kvadratini chiqarish.
x^{2}-\frac{14000}{3}x+\frac{49000000}{9}=\frac{48999994}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{49000000}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7000}{3}\right)^{2}=\frac{48999994}{9}
x^{2}-\frac{14000}{3}x+\frac{49000000}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7000}{3}\right)^{2}}=\sqrt{\frac{48999994}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7000}{3}=\frac{\sqrt{48999994}}{3} x-\frac{7000}{3}=-\frac{\sqrt{48999994}}{3}
Qisqartirish.
x=\frac{\sqrt{48999994}+7000}{3} x=\frac{7000-\sqrt{48999994}}{3}
\frac{7000}{3} ni tenglamaning ikkala tarafiga qo'shish.