x uchun yechish
x = \frac{\sqrt{5} + 1}{2} \approx 1,618033989
x=\frac{1-\sqrt{5}}{2}\approx -0,618033989
Grafik
Viktorina
Quadratic Equation
x + 1 = x ^ { 2 }
Baham ko'rish
Klipbordga nusxa olish
x+1-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}+x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 1 ni b va 1 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
1 ni 4 ga qo'shish.
x=\frac{-1±\sqrt{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{5}-1}{-2}
x=\frac{-1±\sqrt{5}}{-2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{5} ga qo'shish.
x=\frac{1-\sqrt{5}}{2}
-1+\sqrt{5} ni -2 ga bo'lish.
x=\frac{-\sqrt{5}-1}{-2}
x=\frac{-1±\sqrt{5}}{-2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{5} ni ayirish.
x=\frac{\sqrt{5}+1}{2}
-1-\sqrt{5} ni -2 ga bo'lish.
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
Tenglama yechildi.
x+1-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
x-x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}+x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-x=-\frac{1}{-1}
1 ni -1 ga bo'lish.
x^{2}-x=1
-1 ni -1 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Qisqartirish.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}