x uchun yechish
x=2\sqrt{2}+6\approx 8,828427125
x=6-2\sqrt{2}\approx 3,171572875
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-3\right)x+1=9\left(x-3\right)
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x^{2}-3x+1=9\left(x-3\right)
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+1=9x-27
9 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+1-9x=-27
Ikkala tarafdan 9x ni ayirish.
x^{2}-12x+1=-27
-12x ni olish uchun -3x va -9x ni birlashtirish.
x^{2}-12x+1+27=0
27 ni ikki tarafga qo’shing.
x^{2}-12x+28=0
28 olish uchun 1 va 27'ni qo'shing.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 28}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va 28 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 28}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-112}}{2}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{32}}{2}
144 ni -112 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{2}}{2}
32 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{2}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{4\sqrt{2}+12}{2}
x=\frac{12±4\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 4\sqrt{2} ga qo'shish.
x=2\sqrt{2}+6
12+4\sqrt{2} ni 2 ga bo'lish.
x=\frac{12-4\sqrt{2}}{2}
x=\frac{12±4\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 4\sqrt{2} ni ayirish.
x=6-2\sqrt{2}
12-4\sqrt{2} ni 2 ga bo'lish.
x=2\sqrt{2}+6 x=6-2\sqrt{2}
Tenglama yechildi.
\left(x-3\right)x+1=9\left(x-3\right)
x qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
x^{2}-3x+1=9\left(x-3\right)
x-3 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+1=9x-27
9 ga x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+1-9x=-27
Ikkala tarafdan 9x ni ayirish.
x^{2}-12x+1=-27
-12x ni olish uchun -3x va -9x ni birlashtirish.
x^{2}-12x=-27-1
Ikkala tarafdan 1 ni ayirish.
x^{2}-12x=-28
-28 olish uchun -27 dan 1 ni ayirish.
x^{2}-12x+\left(-6\right)^{2}=-28+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=-28+36
-6 kvadratini chiqarish.
x^{2}-12x+36=8
-28 ni 36 ga qo'shish.
\left(x-6\right)^{2}=8
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=2\sqrt{2} x-6=-2\sqrt{2}
Qisqartirish.
x=2\sqrt{2}+6 x=6-2\sqrt{2}
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}