x uchun yechish
x=7\sqrt{51}+50\approx 99,989999
x=50-7\sqrt{51}\approx 0,010001
Grafik
Baham ko'rish
Klipbordga nusxa olish
xx+1=100x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+1=100x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+1-100x=0
Ikkala tarafdan 100x ni ayirish.
x^{2}-100x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -100 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-100\right)±\sqrt{10000-4}}{2}
-100 kvadratini chiqarish.
x=\frac{-\left(-100\right)±\sqrt{9996}}{2}
10000 ni -4 ga qo'shish.
x=\frac{-\left(-100\right)±14\sqrt{51}}{2}
9996 ning kvadrat ildizini chiqarish.
x=\frac{100±14\sqrt{51}}{2}
-100 ning teskarisi 100 ga teng.
x=\frac{14\sqrt{51}+100}{2}
x=\frac{100±14\sqrt{51}}{2} tenglamasini yeching, bunda ± musbat. 100 ni 14\sqrt{51} ga qo'shish.
x=7\sqrt{51}+50
100+14\sqrt{51} ni 2 ga bo'lish.
x=\frac{100-14\sqrt{51}}{2}
x=\frac{100±14\sqrt{51}}{2} tenglamasini yeching, bunda ± manfiy. 100 dan 14\sqrt{51} ni ayirish.
x=50-7\sqrt{51}
100-14\sqrt{51} ni 2 ga bo'lish.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
Tenglama yechildi.
xx+1=100x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
x^{2}+1=100x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+1-100x=0
Ikkala tarafdan 100x ni ayirish.
x^{2}-100x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-100x+\left(-50\right)^{2}=-1+\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=-1+2500
-50 kvadratini chiqarish.
x^{2}-100x+2500=2499
-1 ni 2500 ga qo'shish.
\left(x-50\right)^{2}=2499
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2499}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=7\sqrt{51} x-50=-7\sqrt{51}
Qisqartirish.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
50 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}