Asosiy tarkibga oʻtish
t uchun yechish (complex solution)
Tick mark Image
w uchun yechish (complex solution)
Tick mark Image
t uchun yechish
Tick mark Image
w uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

w-\left(xy-tx^{2}\right)=\left(w+1\right)y
x ga y-tx ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}=\left(w+1\right)y
xy-tx^{2} teskarisini topish uchun har birining teskarisini toping.
w-xy+tx^{2}=wy+y
w+1 ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-xy+tx^{2}=wy+y-w
Ikkala tarafdan w ni ayirish.
tx^{2}=wy+y-w+xy
xy ni ikki tarafga qo’shing.
x^{2}t=xy+wy+y-w
Tenglama standart shaklda.
\frac{x^{2}t}{x^{2}}=\frac{xy+wy+y-w}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
t=\frac{xy+wy+y-w}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
x ga y-tx ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}=\left(w+1\right)y
xy-tx^{2} teskarisini topish uchun har birining teskarisini toping.
w-xy+tx^{2}=wy+y
w+1 ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}-wy=y
Ikkala tarafdan wy ni ayirish.
w+tx^{2}-wy=y+xy
xy ni ikki tarafga qo’shing.
w-wy=y+xy-tx^{2}
Ikkala tarafdan tx^{2} ni ayirish.
-wy+w=-tx^{2}+xy+y
Shartlarni qayta saralash.
\left(-y+1\right)w=-tx^{2}+xy+y
w'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(1-y\right)w=y+xy-tx^{2}
Tenglama standart shaklda.
\frac{\left(1-y\right)w}{1-y}=\frac{y+xy-tx^{2}}{1-y}
Ikki tarafini -y+1 ga bo‘ling.
w=\frac{y+xy-tx^{2}}{1-y}
-y+1 ga bo'lish -y+1 ga ko'paytirishni bekor qiladi.
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
x ga y-tx ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}=\left(w+1\right)y
xy-tx^{2} teskarisini topish uchun har birining teskarisini toping.
w-xy+tx^{2}=wy+y
w+1 ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-xy+tx^{2}=wy+y-w
Ikkala tarafdan w ni ayirish.
tx^{2}=wy+y-w+xy
xy ni ikki tarafga qo’shing.
x^{2}t=xy+wy+y-w
Tenglama standart shaklda.
\frac{x^{2}t}{x^{2}}=\frac{xy+wy+y-w}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
t=\frac{xy+wy+y-w}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
w-\left(xy-tx^{2}\right)=\left(w+1\right)y
x ga y-tx ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}=\left(w+1\right)y
xy-tx^{2} teskarisini topish uchun har birining teskarisini toping.
w-xy+tx^{2}=wy+y
w+1 ga y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
w-xy+tx^{2}-wy=y
Ikkala tarafdan wy ni ayirish.
w+tx^{2}-wy=y+xy
xy ni ikki tarafga qo’shing.
w-wy=y+xy-tx^{2}
Ikkala tarafdan tx^{2} ni ayirish.
-wy+w=-tx^{2}+xy+y
Shartlarni qayta saralash.
\left(-y+1\right)w=-tx^{2}+xy+y
w'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(1-y\right)w=y+xy-tx^{2}
Tenglama standart shaklda.
\frac{\left(1-y\right)w}{1-y}=\frac{y+xy-tx^{2}}{1-y}
Ikki tarafini -y+1 ga bo‘ling.
w=\frac{y+xy-tx^{2}}{1-y}
-y+1 ga bo'lish -y+1 ga ko'paytirishni bekor qiladi.