w uchun yechish
w=10
w=0
Baham ko'rish
Klipbordga nusxa olish
w^{2}-10w=0
Ikkala tarafdan 10w ni ayirish.
w\left(w-10\right)=0
w omili.
w=0 w=10
Tenglamani yechish uchun w=0 va w-10=0 ni yeching.
w^{2}-10w=0
Ikkala tarafdan 10w ni ayirish.
w=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va 0 ni c bilan almashtiring.
w=\frac{-\left(-10\right)±10}{2}
\left(-10\right)^{2} ning kvadrat ildizini chiqarish.
w=\frac{10±10}{2}
-10 ning teskarisi 10 ga teng.
w=\frac{20}{2}
w=\frac{10±10}{2} tenglamasini yeching, bunda ± musbat. 10 ni 10 ga qo'shish.
w=10
20 ni 2 ga bo'lish.
w=\frac{0}{2}
w=\frac{10±10}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 10 ni ayirish.
w=0
0 ni 2 ga bo'lish.
w=10 w=0
Tenglama yechildi.
w^{2}-10w=0
Ikkala tarafdan 10w ni ayirish.
w^{2}-10w+\left(-5\right)^{2}=\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}-10w+25=25
-5 kvadratini chiqarish.
\left(w-5\right)^{2}=25
w^{2}-10w+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w-5\right)^{2}}=\sqrt{25}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w-5=5 w-5=-5
Qisqartirish.
w=10 w=0
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}