w uchun yechish
w=-7+\sqrt{87}i\approx -7+9,327379053i
w=-\sqrt{87}i-7\approx -7-9,327379053i
Baham ko'rish
Klipbordga nusxa olish
w^{2}+14w+136=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-14±\sqrt{14^{2}-4\times 136}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 14 ni b va 136 ni c bilan almashtiring.
w=\frac{-14±\sqrt{196-4\times 136}}{2}
14 kvadratini chiqarish.
w=\frac{-14±\sqrt{196-544}}{2}
-4 ni 136 marotabaga ko'paytirish.
w=\frac{-14±\sqrt{-348}}{2}
196 ni -544 ga qo'shish.
w=\frac{-14±2\sqrt{87}i}{2}
-348 ning kvadrat ildizini chiqarish.
w=\frac{-14+2\sqrt{87}i}{2}
w=\frac{-14±2\sqrt{87}i}{2} tenglamasini yeching, bunda ± musbat. -14 ni 2i\sqrt{87} ga qo'shish.
w=-7+\sqrt{87}i
-14+2i\sqrt{87} ni 2 ga bo'lish.
w=\frac{-2\sqrt{87}i-14}{2}
w=\frac{-14±2\sqrt{87}i}{2} tenglamasini yeching, bunda ± manfiy. -14 dan 2i\sqrt{87} ni ayirish.
w=-\sqrt{87}i-7
-14-2i\sqrt{87} ni 2 ga bo'lish.
w=-7+\sqrt{87}i w=-\sqrt{87}i-7
Tenglama yechildi.
w^{2}+14w+136=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
w^{2}+14w+136-136=-136
Tenglamaning ikkala tarafidan 136 ni ayirish.
w^{2}+14w=-136
O‘zidan 136 ayirilsa 0 qoladi.
w^{2}+14w+7^{2}=-136+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}+14w+49=-136+49
7 kvadratini chiqarish.
w^{2}+14w+49=-87
-136 ni 49 ga qo'shish.
\left(w+7\right)^{2}=-87
w^{2}+14w+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w+7\right)^{2}}=\sqrt{-87}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w+7=\sqrt{87}i w+7=-\sqrt{87}i
Qisqartirish.
w=-7+\sqrt{87}i w=-\sqrt{87}i-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}