Asosiy tarkibga oʻtish
v uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

v^{2}-7v-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
v=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va -9 ni c bilan almashtiring.
v=\frac{-\left(-7\right)±\sqrt{49-4\left(-9\right)}}{2}
-7 kvadratini chiqarish.
v=\frac{-\left(-7\right)±\sqrt{49+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
v=\frac{-\left(-7\right)±\sqrt{85}}{2}
49 ni 36 ga qo'shish.
v=\frac{7±\sqrt{85}}{2}
-7 ning teskarisi 7 ga teng.
v=\frac{\sqrt{85}+7}{2}
v=\frac{7±\sqrt{85}}{2} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{85} ga qo'shish.
v=\frac{7-\sqrt{85}}{2}
v=\frac{7±\sqrt{85}}{2} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{85} ni ayirish.
v=\frac{\sqrt{85}+7}{2} v=\frac{7-\sqrt{85}}{2}
Tenglama yechildi.
v^{2}-7v-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
v^{2}-7v-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
v^{2}-7v=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
v^{2}-7v=9
0 dan -9 ni ayirish.
v^{2}-7v+\left(-\frac{7}{2}\right)^{2}=9+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
v^{2}-7v+\frac{49}{4}=9+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
v^{2}-7v+\frac{49}{4}=\frac{85}{4}
9 ni \frac{49}{4} ga qo'shish.
\left(v-\frac{7}{2}\right)^{2}=\frac{85}{4}
v^{2}-7v+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(v-\frac{7}{2}\right)^{2}}=\sqrt{\frac{85}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
v-\frac{7}{2}=\frac{\sqrt{85}}{2} v-\frac{7}{2}=-\frac{\sqrt{85}}{2}
Qisqartirish.
v=\frac{\sqrt{85}+7}{2} v=\frac{7-\sqrt{85}}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.