Asosiy tarkibga oʻtish
u uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

u^{2}-\frac{2}{3}u=\frac{5}{4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
u^{2}-\frac{2}{3}u-\frac{5}{4}=\frac{5}{4}-\frac{5}{4}
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.
u^{2}-\frac{2}{3}u-\frac{5}{4}=0
O‘zidan \frac{5}{4} ayirilsa 0 qoladi.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\left(-\frac{5}{4}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{2}{3} ni b va -\frac{5}{4} ni c bilan almashtiring.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\left(-\frac{5}{4}\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+5}}{2}
-4 ni -\frac{5}{4} marotabaga ko'paytirish.
u=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{49}{9}}}{2}
\frac{4}{9} ni 5 ga qo'shish.
u=\frac{-\left(-\frac{2}{3}\right)±\frac{7}{3}}{2}
\frac{49}{9} ning kvadrat ildizini chiqarish.
u=\frac{\frac{2}{3}±\frac{7}{3}}{2}
-\frac{2}{3} ning teskarisi \frac{2}{3} ga teng.
u=\frac{3}{2}
u=\frac{\frac{2}{3}±\frac{7}{3}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni \frac{7}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
u=-\frac{\frac{5}{3}}{2}
u=\frac{\frac{2}{3}±\frac{7}{3}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{7}{3} ni \frac{2}{3} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
u=-\frac{5}{6}
-\frac{5}{3} ni 2 ga bo'lish.
u=\frac{3}{2} u=-\frac{5}{6}
Tenglama yechildi.
u^{2}-\frac{2}{3}u=\frac{5}{4}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
u^{2}-\frac{2}{3}u+\left(-\frac{1}{3}\right)^{2}=\frac{5}{4}+\left(-\frac{1}{3}\right)^{2}
-\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{3} olish uchun. Keyin, -\frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{5}{4}+\frac{1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{3} kvadratini chiqarish.
u^{2}-\frac{2}{3}u+\frac{1}{9}=\frac{49}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{4} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(u-\frac{1}{3}\right)^{2}=\frac{49}{36}
u^{2}-\frac{2}{3}u+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(u-\frac{1}{3}\right)^{2}}=\sqrt{\frac{49}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
u-\frac{1}{3}=\frac{7}{6} u-\frac{1}{3}=-\frac{7}{6}
Qisqartirish.
u=\frac{3}{2} u=-\frac{5}{6}
\frac{1}{3} ni tenglamaning ikkala tarafiga qo'shish.