t uchun yechish
t=\sqrt{21}+4\approx 8,582575695
t=4-\sqrt{21}\approx -0,582575695
Baham ko'rish
Klipbordga nusxa olish
t^{2}-8t-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va -5 ni c bilan almashtiring.
t=\frac{-\left(-8\right)±\sqrt{64-4\left(-5\right)}}{2}
-8 kvadratini chiqarish.
t=\frac{-\left(-8\right)±\sqrt{64+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
t=\frac{-\left(-8\right)±\sqrt{84}}{2}
64 ni 20 ga qo'shish.
t=\frac{-\left(-8\right)±2\sqrt{21}}{2}
84 ning kvadrat ildizini chiqarish.
t=\frac{8±2\sqrt{21}}{2}
-8 ning teskarisi 8 ga teng.
t=\frac{2\sqrt{21}+8}{2}
t=\frac{8±2\sqrt{21}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{21} ga qo'shish.
t=\sqrt{21}+4
8+2\sqrt{21} ni 2 ga bo'lish.
t=\frac{8-2\sqrt{21}}{2}
t=\frac{8±2\sqrt{21}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{21} ni ayirish.
t=4-\sqrt{21}
8-2\sqrt{21} ni 2 ga bo'lish.
t=\sqrt{21}+4 t=4-\sqrt{21}
Tenglama yechildi.
t^{2}-8t-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-8t-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
t^{2}-8t=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
t^{2}-8t=5
0 dan -5 ni ayirish.
t^{2}-8t+\left(-4\right)^{2}=5+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-8t+16=5+16
-4 kvadratini chiqarish.
t^{2}-8t+16=21
5 ni 16 ga qo'shish.
\left(t-4\right)^{2}=21
t^{2}-8t+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-4\right)^{2}}=\sqrt{21}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-4=\sqrt{21} t-4=-\sqrt{21}
Qisqartirish.
t=\sqrt{21}+4 t=4-\sqrt{21}
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}