Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

t^{2}-8t-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va -5 ni c bilan almashtiring.
t=\frac{-\left(-8\right)±\sqrt{64-4\left(-5\right)}}{2}
-8 kvadratini chiqarish.
t=\frac{-\left(-8\right)±\sqrt{64+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
t=\frac{-\left(-8\right)±\sqrt{84}}{2}
64 ni 20 ga qo'shish.
t=\frac{-\left(-8\right)±2\sqrt{21}}{2}
84 ning kvadrat ildizini chiqarish.
t=\frac{8±2\sqrt{21}}{2}
-8 ning teskarisi 8 ga teng.
t=\frac{2\sqrt{21}+8}{2}
t=\frac{8±2\sqrt{21}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{21} ga qo'shish.
t=\sqrt{21}+4
8+2\sqrt{21} ni 2 ga bo'lish.
t=\frac{8-2\sqrt{21}}{2}
t=\frac{8±2\sqrt{21}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{21} ni ayirish.
t=4-\sqrt{21}
8-2\sqrt{21} ni 2 ga bo'lish.
t=\sqrt{21}+4 t=4-\sqrt{21}
Tenglama yechildi.
t^{2}-8t-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-8t-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
t^{2}-8t=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
t^{2}-8t=5
0 dan -5 ni ayirish.
t^{2}-8t+\left(-4\right)^{2}=5+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-8t+16=5+16
-4 kvadratini chiqarish.
t^{2}-8t+16=21
5 ni 16 ga qo'shish.
\left(t-4\right)^{2}=21
t^{2}-8t+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-4\right)^{2}}=\sqrt{21}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-4=\sqrt{21} t-4=-\sqrt{21}
Qisqartirish.
t=\sqrt{21}+4 t=4-\sqrt{21}
4 ni tenglamaning ikkala tarafiga qo'shish.