t uchun yechish
t\in (-\infty,2-2\sqrt{2}]\cup [2\sqrt{2}+2,\infty)
Baham ko'rish
Klipbordga nusxa olish
t^{2}-4t-4=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-4\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -4 ni va c uchun -4 ni ayiring.
t=\frac{4±4\sqrt{2}}{2}
Hisoblarni amalga oshiring.
t=2\sqrt{2}+2 t=2-2\sqrt{2}
t=\frac{4±4\sqrt{2}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
\left(t-\left(2\sqrt{2}+2\right)\right)\left(t-\left(2-2\sqrt{2}\right)\right)\geq 0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
t-\left(2\sqrt{2}+2\right)\leq 0 t-\left(2-2\sqrt{2}\right)\leq 0
Koʻpaytma ≥0 boʻlishi uchun t-\left(2\sqrt{2}+2\right) va t-\left(2-2\sqrt{2}\right) ikkalasi ≤0 yoki ≥0 boʻlishi kerak. t-\left(2\sqrt{2}+2\right) va t-\left(2-2\sqrt{2}\right) ikkalasi ≤0 ga teng boʻlganda, yechimini toping.
t\leq 2-2\sqrt{2}
Ikkala tengsizlikning mos yechimi – t\leq 2-2\sqrt{2}.
t-\left(2-2\sqrt{2}\right)\geq 0 t-\left(2\sqrt{2}+2\right)\geq 0
t-\left(2\sqrt{2}+2\right) va t-\left(2-2\sqrt{2}\right) ikkalasi ≥0 ga teng boʻlganda, yechimini toping.
t\geq 2\sqrt{2}+2
Ikkala tengsizlikning mos yechimi – t\geq 2\sqrt{2}+2.
t\leq 2-2\sqrt{2}\text{; }t\geq 2\sqrt{2}+2
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}