t uchun yechish
t=-1
t=4
Baham ko'rish
Klipbordga nusxa olish
a+b=-3 ab=-4
Bu tenglamani yechish uchun t^{2}+\left(a+b\right)t+ab=\left(t+a\right)\left(t+b\right) formulasi yordamida t^{2}-3t-4 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-4 2,-2
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -4-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-4=-3 2-2=0
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=1
Yechim – -3 yigʻindisini beruvchi juftlik.
\left(t-4\right)\left(t+1\right)
Faktorlangan \left(t+a\right)\left(t+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
t=4 t=-1
Tenglamani yechish uchun t-4=0 va t+1=0 ni yeching.
a+b=-3 ab=1\left(-4\right)=-4
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon t^{2}+at+bt-4 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-4 2,-2
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -4-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-4=-3 2-2=0
Har bir juftlik yigʻindisini hisoblang.
a=-4 b=1
Yechim – -3 yigʻindisini beruvchi juftlik.
\left(t^{2}-4t\right)+\left(t-4\right)
t^{2}-3t-4 ni \left(t^{2}-4t\right)+\left(t-4\right) sifatida qaytadan yozish.
t\left(t-4\right)+t-4
t^{2}-4t ichida t ni ajrating.
\left(t-4\right)\left(t+1\right)
Distributiv funktsiyasidan foydalangan holda t-4 umumiy terminini chiqaring.
t=4 t=-1
Tenglamani yechish uchun t-4=0 va t+1=0 ni yeching.
t^{2}-3t-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -4 ni c bilan almashtiring.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)}}{2}
-3 kvadratini chiqarish.
t=\frac{-\left(-3\right)±\sqrt{9+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
t=\frac{-\left(-3\right)±\sqrt{25}}{2}
9 ni 16 ga qo'shish.
t=\frac{-\left(-3\right)±5}{2}
25 ning kvadrat ildizini chiqarish.
t=\frac{3±5}{2}
-3 ning teskarisi 3 ga teng.
t=\frac{8}{2}
t=\frac{3±5}{2} tenglamasini yeching, bunda ± musbat. 3 ni 5 ga qo'shish.
t=4
8 ni 2 ga bo'lish.
t=-\frac{2}{2}
t=\frac{3±5}{2} tenglamasini yeching, bunda ± manfiy. 3 dan 5 ni ayirish.
t=-1
-2 ni 2 ga bo'lish.
t=4 t=-1
Tenglama yechildi.
t^{2}-3t-4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-3t-4-\left(-4\right)=-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
t^{2}-3t=-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
t^{2}-3t=4
0 dan -4 ni ayirish.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-3t+\frac{9}{4}=4+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
t^{2}-3t+\frac{9}{4}=\frac{25}{4}
4 ni \frac{9}{4} ga qo'shish.
\left(t-\frac{3}{2}\right)^{2}=\frac{25}{4}
t^{2}-3t+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{3}{2}=\frac{5}{2} t-\frac{3}{2}=-\frac{5}{2}
Qisqartirish.
t=4 t=-1
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}