t uchun yechish
t = \frac{\sqrt{17} + 3}{2} \approx 3,561552813
t=\frac{3-\sqrt{17}}{2}\approx -0,561552813
Baham ko'rish
Klipbordga nusxa olish
t^{2}-3t-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -2 ni c bilan almashtiring.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)}}{2}
-3 kvadratini chiqarish.
t=\frac{-\left(-3\right)±\sqrt{9+8}}{2}
-4 ni -2 marotabaga ko'paytirish.
t=\frac{-\left(-3\right)±\sqrt{17}}{2}
9 ni 8 ga qo'shish.
t=\frac{3±\sqrt{17}}{2}
-3 ning teskarisi 3 ga teng.
t=\frac{\sqrt{17}+3}{2}
t=\frac{3±\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{17} ga qo'shish.
t=\frac{3-\sqrt{17}}{2}
t=\frac{3±\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{17} ni ayirish.
t=\frac{\sqrt{17}+3}{2} t=\frac{3-\sqrt{17}}{2}
Tenglama yechildi.
t^{2}-3t-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-3t-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
t^{2}-3t=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
t^{2}-3t=2
0 dan -2 ni ayirish.
t^{2}-3t+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-3t+\frac{9}{4}=2+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
t^{2}-3t+\frac{9}{4}=\frac{17}{4}
2 ni \frac{9}{4} ga qo'shish.
\left(t-\frac{3}{2}\right)^{2}=\frac{17}{4}
t^{2}-3t+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{3}{2}=\frac{\sqrt{17}}{2} t-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Qisqartirish.
t=\frac{\sqrt{17}+3}{2} t=\frac{3-\sqrt{17}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}