Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(t-5\right)\left(t+5\right)=0
Hisoblang: t^{2}-25. t^{2}-25 ni t^{2}-5^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=5 t=-5
Tenglamani yechish uchun t-5=0 va t+5=0 ni yeching.
t^{2}=25
25 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
t=5 t=-5
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t^{2}-25=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-25\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -25 ni c bilan almashtiring.
t=\frac{0±\sqrt{-4\left(-25\right)}}{2}
0 kvadratini chiqarish.
t=\frac{0±\sqrt{100}}{2}
-4 ni -25 marotabaga ko'paytirish.
t=\frac{0±10}{2}
100 ning kvadrat ildizini chiqarish.
t=5
t=\frac{0±10}{2} tenglamasini yeching, bunda ± musbat. 10 ni 2 ga bo'lish.
t=-5
t=\frac{0±10}{2} tenglamasini yeching, bunda ± manfiy. -10 ni 2 ga bo'lish.
t=5 t=-5
Tenglama yechildi.