Omil
\left(t-5\right)\left(t+3\right)
Baholash
\left(t-5\right)\left(t+3\right)
Baham ko'rish
Klipbordga nusxa olish
a+b=-2 ab=1\left(-15\right)=-15
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda t^{2}+at+bt-15 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-15 3,-5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -15-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-15=-14 3-5=-2
Har bir juftlik yigʻindisini hisoblang.
a=-5 b=3
Yechim – -2 yigʻindisini beruvchi juftlik.
\left(t^{2}-5t\right)+\left(3t-15\right)
t^{2}-2t-15 ni \left(t^{2}-5t\right)+\left(3t-15\right) sifatida qaytadan yozish.
t\left(t-5\right)+3\left(t-5\right)
Birinchi guruhda t ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(t-5\right)\left(t+3\right)
Distributiv funktsiyasidan foydalangan holda t-5 umumiy terminini chiqaring.
t^{2}-2t-15=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-15\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-2\right)±\sqrt{4-4\left(-15\right)}}{2}
-2 kvadratini chiqarish.
t=\frac{-\left(-2\right)±\sqrt{4+60}}{2}
-4 ni -15 marotabaga ko'paytirish.
t=\frac{-\left(-2\right)±\sqrt{64}}{2}
4 ni 60 ga qo'shish.
t=\frac{-\left(-2\right)±8}{2}
64 ning kvadrat ildizini chiqarish.
t=\frac{2±8}{2}
-2 ning teskarisi 2 ga teng.
t=\frac{10}{2}
t=\frac{2±8}{2} tenglamasini yeching, bunda ± musbat. 2 ni 8 ga qo'shish.
t=5
10 ni 2 ga bo'lish.
t=-\frac{6}{2}
t=\frac{2±8}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 8 ni ayirish.
t=-3
-6 ni 2 ga bo'lish.
t^{2}-2t-15=\left(t-5\right)\left(t-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 5 ga va x_{2} uchun -3 ga bo‘ling.
t^{2}-2t-15=\left(t-5\right)\left(t+3\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}