Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

t^{2}-107t+900=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-107\right)±\sqrt{\left(-107\right)^{2}-4\times 900}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -107 ni b va 900 ni c bilan almashtiring.
t=\frac{-\left(-107\right)±\sqrt{11449-4\times 900}}{2}
-107 kvadratini chiqarish.
t=\frac{-\left(-107\right)±\sqrt{11449-3600}}{2}
-4 ni 900 marotabaga ko'paytirish.
t=\frac{-\left(-107\right)±\sqrt{7849}}{2}
11449 ni -3600 ga qo'shish.
t=\frac{107±\sqrt{7849}}{2}
-107 ning teskarisi 107 ga teng.
t=\frac{\sqrt{7849}+107}{2}
t=\frac{107±\sqrt{7849}}{2} tenglamasini yeching, bunda ± musbat. 107 ni \sqrt{7849} ga qo'shish.
t=\frac{107-\sqrt{7849}}{2}
t=\frac{107±\sqrt{7849}}{2} tenglamasini yeching, bunda ± manfiy. 107 dan \sqrt{7849} ni ayirish.
t=\frac{\sqrt{7849}+107}{2} t=\frac{107-\sqrt{7849}}{2}
Tenglama yechildi.
t^{2}-107t+900=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-107t+900-900=-900
Tenglamaning ikkala tarafidan 900 ni ayirish.
t^{2}-107t=-900
O‘zidan 900 ayirilsa 0 qoladi.
t^{2}-107t+\left(-\frac{107}{2}\right)^{2}=-900+\left(-\frac{107}{2}\right)^{2}
-107 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{107}{2} olish uchun. Keyin, -\frac{107}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-107t+\frac{11449}{4}=-900+\frac{11449}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{107}{2} kvadratini chiqarish.
t^{2}-107t+\frac{11449}{4}=\frac{7849}{4}
-900 ni \frac{11449}{4} ga qo'shish.
\left(t-\frac{107}{2}\right)^{2}=\frac{7849}{4}
t^{2}-107t+\frac{11449}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{107}{2}\right)^{2}}=\sqrt{\frac{7849}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{107}{2}=\frac{\sqrt{7849}}{2} t-\frac{107}{2}=-\frac{\sqrt{7849}}{2}
Qisqartirish.
t=\frac{\sqrt{7849}+107}{2} t=\frac{107-\sqrt{7849}}{2}
\frac{107}{2} ni tenglamaning ikkala tarafiga qo'shish.