t uchun yechish
t = \frac{\sqrt{7849} + 107}{2} \approx 97,797291114
t = \frac{107 - \sqrt{7849}}{2} \approx 9,202708886
Baham ko'rish
Klipbordga nusxa olish
t^{2}-107t+900=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-107\right)±\sqrt{\left(-107\right)^{2}-4\times 900}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -107 ni b va 900 ni c bilan almashtiring.
t=\frac{-\left(-107\right)±\sqrt{11449-4\times 900}}{2}
-107 kvadratini chiqarish.
t=\frac{-\left(-107\right)±\sqrt{11449-3600}}{2}
-4 ni 900 marotabaga ko'paytirish.
t=\frac{-\left(-107\right)±\sqrt{7849}}{2}
11449 ni -3600 ga qo'shish.
t=\frac{107±\sqrt{7849}}{2}
-107 ning teskarisi 107 ga teng.
t=\frac{\sqrt{7849}+107}{2}
t=\frac{107±\sqrt{7849}}{2} tenglamasini yeching, bunda ± musbat. 107 ni \sqrt{7849} ga qo'shish.
t=\frac{107-\sqrt{7849}}{2}
t=\frac{107±\sqrt{7849}}{2} tenglamasini yeching, bunda ± manfiy. 107 dan \sqrt{7849} ni ayirish.
t=\frac{\sqrt{7849}+107}{2} t=\frac{107-\sqrt{7849}}{2}
Tenglama yechildi.
t^{2}-107t+900=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
t^{2}-107t+900-900=-900
Tenglamaning ikkala tarafidan 900 ni ayirish.
t^{2}-107t=-900
O‘zidan 900 ayirilsa 0 qoladi.
t^{2}-107t+\left(-\frac{107}{2}\right)^{2}=-900+\left(-\frac{107}{2}\right)^{2}
-107 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{107}{2} olish uchun. Keyin, -\frac{107}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-107t+\frac{11449}{4}=-900+\frac{11449}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{107}{2} kvadratini chiqarish.
t^{2}-107t+\frac{11449}{4}=\frac{7849}{4}
-900 ni \frac{11449}{4} ga qo'shish.
\left(t-\frac{107}{2}\right)^{2}=\frac{7849}{4}
t^{2}-107t+\frac{11449}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{107}{2}\right)^{2}}=\sqrt{\frac{7849}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{107}{2}=\frac{\sqrt{7849}}{2} t-\frac{107}{2}=-\frac{\sqrt{7849}}{2}
Qisqartirish.
t=\frac{\sqrt{7849}+107}{2} t=\frac{107-\sqrt{7849}}{2}
\frac{107}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}