Asosiy tarkibga oʻtish
t uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

t^{2}-36=0
Ikkala tarafdan 36 ni ayirish.
\left(t-6\right)\left(t+6\right)=0
Hisoblang: t^{2}-36. t^{2}-36 ni t^{2}-6^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=6 t=-6
Tenglamani yechish uchun t-6=0 va t+6=0 ni yeching.
t=6 t=-6
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t^{2}-36=0
Ikkala tarafdan 36 ni ayirish.
t=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -36 ni c bilan almashtiring.
t=\frac{0±\sqrt{-4\left(-36\right)}}{2}
0 kvadratini chiqarish.
t=\frac{0±\sqrt{144}}{2}
-4 ni -36 marotabaga ko'paytirish.
t=\frac{0±12}{2}
144 ning kvadrat ildizini chiqarish.
t=6
t=\frac{0±12}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2 ga bo'lish.
t=-6
t=\frac{0±12}{2} tenglamasini yeching, bunda ± manfiy. -12 ni 2 ga bo'lish.
t=6 t=-6
Tenglama yechildi.