V_0 uchun yechish
V_{0}=V_{t}-2t
V_t uchun yechish
V_{t}=2t+V_{0}
Baham ko'rish
Klipbordga nusxa olish
t=\frac{1}{2}V_{t}-\frac{1}{2}V_{0}
\frac{1}{2}V_{t}-\frac{1}{2}V_{0} natijani olish uchun V_{t}-V_{0} ning har bir ifodasini 2 ga bo‘ling.
\frac{1}{2}V_{t}-\frac{1}{2}V_{0}=t
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{2}V_{0}=t-\frac{1}{2}V_{t}
Ikkala tarafdan \frac{1}{2}V_{t} ni ayirish.
-\frac{1}{2}V_{0}=-\frac{V_{t}}{2}+t
Tenglama standart shaklda.
\frac{-\frac{1}{2}V_{0}}{-\frac{1}{2}}=\frac{-\frac{V_{t}}{2}+t}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
V_{0}=\frac{-\frac{V_{t}}{2}+t}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
V_{0}=V_{t}-2t
t-\frac{V_{t}}{2} ni -\frac{1}{2} ga bo'lish t-\frac{V_{t}}{2} ga k'paytirish -\frac{1}{2} ga qaytarish.
t=\frac{1}{2}V_{t}-\frac{1}{2}V_{0}
\frac{1}{2}V_{t}-\frac{1}{2}V_{0} natijani olish uchun V_{t}-V_{0} ning har bir ifodasini 2 ga bo‘ling.
\frac{1}{2}V_{t}-\frac{1}{2}V_{0}=t
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}V_{t}=t+\frac{1}{2}V_{0}
\frac{1}{2}V_{0} ni ikki tarafga qo’shing.
\frac{1}{2}V_{t}=\frac{V_{0}}{2}+t
Tenglama standart shaklda.
\frac{\frac{1}{2}V_{t}}{\frac{1}{2}}=\frac{\frac{V_{0}}{2}+t}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
V_{t}=\frac{\frac{V_{0}}{2}+t}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
V_{t}=2t+V_{0}
t+\frac{V_{0}}{2} ni \frac{1}{2} ga bo'lish t+\frac{V_{0}}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}