Asosiy tarkibga oʻtish
s uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

s^{2}=629298\times \frac{6909}{100}
s^{2} hosil qilish uchun s va s ni ko'paytirish.
s^{2}=\frac{629298\times 6909}{100}
629298\times \frac{6909}{100} ni yagona kasrga aylantiring.
s^{2}=\frac{4347819882}{100}
4347819882 hosil qilish uchun 629298 va 6909 ni ko'paytirish.
s^{2}=\frac{2173909941}{50}
\frac{4347819882}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
s^{2}=629298\times \frac{6909}{100}
s^{2} hosil qilish uchun s va s ni ko'paytirish.
s^{2}=\frac{629298\times 6909}{100}
629298\times \frac{6909}{100} ni yagona kasrga aylantiring.
s^{2}=\frac{4347819882}{100}
4347819882 hosil qilish uchun 629298 va 6909 ni ko'paytirish.
s^{2}=\frac{2173909941}{50}
\frac{4347819882}{100} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
s^{2}-\frac{2173909941}{50}=0
Ikkala tarafdan \frac{2173909941}{50} ni ayirish.
s=\frac{0±\sqrt{0^{2}-4\left(-\frac{2173909941}{50}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{2173909941}{50} ni c bilan almashtiring.
s=\frac{0±\sqrt{-4\left(-\frac{2173909941}{50}\right)}}{2}
0 kvadratini chiqarish.
s=\frac{0±\sqrt{\frac{4347819882}{25}}}{2}
-4 ni -\frac{2173909941}{50} marotabaga ko'paytirish.
s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2}
\frac{4347819882}{25} ning kvadrat ildizini chiqarish.
s=\frac{21\sqrt{9859002}}{10}
s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} tenglamasini yeching, bunda ± musbat.
s=-\frac{21\sqrt{9859002}}{10}
s=\frac{0±\frac{21\sqrt{9859002}}{5}}{2} tenglamasini yeching, bunda ± manfiy.
s=\frac{21\sqrt{9859002}}{10} s=-\frac{21\sqrt{9859002}}{10}
Tenglama yechildi.