s uchun yechish (complex solution)
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{C}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right,
t uchun yechish (complex solution)
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{C}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right,
s uchun yechish
\left\{\begin{matrix}s=\frac{x}{\epsilon }\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\s\in \mathrm{R}\text{, }&t=0\text{ and }\epsilon \neq 0\text{ and }x\neq 0\end{matrix}\right,
t uchun yechish
\left\{\begin{matrix}t=0\text{, }&x\neq 0\text{ and }\epsilon \neq 0\\t\in \mathrm{R}\text{, }&s\epsilon \neq 0\text{ and }x=s\epsilon \end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
\epsilon \times \frac{s}{x}t=t
Tenglamaning ikkala tarafini \epsilon ga ko'paytirish.
\frac{\epsilon s}{x}t=t
\epsilon \times \frac{s}{x} ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}=t
\frac{\epsilon s}{x}t ni yagona kasrga aylantiring.
\epsilon st=tx
Tenglamaning ikkala tarafini x ga ko'paytirish.
t\epsilon s=tx
Tenglama standart shaklda.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Ikki tarafini \epsilon t ga bo‘ling.
s=\frac{tx}{t\epsilon }
\epsilon t ga bo'lish \epsilon t ga ko'paytirishni bekor qiladi.
s=\frac{x}{\epsilon }
tx ni \epsilon t ga bo'lish.
\epsilon \times \frac{s}{x}t=t
Tenglamaning ikkala tarafini \epsilon ga ko'paytirish.
\frac{\epsilon s}{x}t=t
\epsilon \times \frac{s}{x} ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}=t
\frac{\epsilon s}{x}t ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}-t=0
Ikkala tarafdan t ni ayirish.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. t ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\epsilon st-tx}{x}=0
\frac{\epsilon st}{x} va \frac{tx}{x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\epsilon st-tx=0
Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(\epsilon s-x\right)t=0
t'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(s\epsilon -x\right)t=0
Tenglama standart shaklda.
t=0
0 ni s\epsilon -x ga bo'lish.
\epsilon \times \frac{s}{x}t=t
Tenglamaning ikkala tarafini \epsilon ga ko'paytirish.
\frac{\epsilon s}{x}t=t
\epsilon \times \frac{s}{x} ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}=t
\frac{\epsilon s}{x}t ni yagona kasrga aylantiring.
\epsilon st=tx
Tenglamaning ikkala tarafini x ga ko'paytirish.
t\epsilon s=tx
Tenglama standart shaklda.
\frac{t\epsilon s}{t\epsilon }=\frac{tx}{t\epsilon }
Ikki tarafini \epsilon t ga bo‘ling.
s=\frac{tx}{t\epsilon }
\epsilon t ga bo'lish \epsilon t ga ko'paytirishni bekor qiladi.
s=\frac{x}{\epsilon }
tx ni \epsilon t ga bo'lish.
\epsilon \times \frac{s}{x}t=t
Tenglamaning ikkala tarafini \epsilon ga ko'paytirish.
\frac{\epsilon s}{x}t=t
\epsilon \times \frac{s}{x} ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}=t
\frac{\epsilon s}{x}t ni yagona kasrga aylantiring.
\frac{\epsilon st}{x}-t=0
Ikkala tarafdan t ni ayirish.
\frac{\epsilon st}{x}-\frac{tx}{x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. t ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\epsilon st-tx}{x}=0
\frac{\epsilon st}{x} va \frac{tx}{x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\epsilon st-tx=0
Tenglamaning ikkala tarafini x ga ko'paytirish.
\left(\epsilon s-x\right)t=0
t'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(s\epsilon -x\right)t=0
Tenglama standart shaklda.
t=0
0 ni s\epsilon -x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}