s uchun yechish
s=9
s=0
Baham ko'rish
Klipbordga nusxa olish
s\left(s-9\right)=0
s omili.
s=0 s=9
Tenglamani yechish uchun s=0 va s-9=0 ni yeching.
s^{2}-9s=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
s=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va 0 ni c bilan almashtiring.
s=\frac{-\left(-9\right)±9}{2}
\left(-9\right)^{2} ning kvadrat ildizini chiqarish.
s=\frac{9±9}{2}
-9 ning teskarisi 9 ga teng.
s=\frac{18}{2}
s=\frac{9±9}{2} tenglamasini yeching, bunda ± musbat. 9 ni 9 ga qo'shish.
s=9
18 ni 2 ga bo'lish.
s=\frac{0}{2}
s=\frac{9±9}{2} tenglamasini yeching, bunda ± manfiy. 9 dan 9 ni ayirish.
s=0
0 ni 2 ga bo'lish.
s=9 s=0
Tenglama yechildi.
s^{2}-9s=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
s^{2}-9s+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
s^{2}-9s+\frac{81}{4}=\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
\left(s-\frac{9}{2}\right)^{2}=\frac{81}{4}
s^{2}-9s+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(s-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
s-\frac{9}{2}=\frac{9}{2} s-\frac{9}{2}=-\frac{9}{2}
Qisqartirish.
s=9 s=0
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}