Asosiy tarkibga oʻtish
s uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

s\left(s-9\right)=0
s omili.
s=0 s=9
Tenglamani yechish uchun s=0 va s-9=0 ni yeching.
s^{2}-9s=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
s=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -9 ni b va 0 ni c bilan almashtiring.
s=\frac{-\left(-9\right)±9}{2}
\left(-9\right)^{2} ning kvadrat ildizini chiqarish.
s=\frac{9±9}{2}
-9 ning teskarisi 9 ga teng.
s=\frac{18}{2}
s=\frac{9±9}{2} tenglamasini yeching, bunda ± musbat. 9 ni 9 ga qo'shish.
s=9
18 ni 2 ga bo'lish.
s=\frac{0}{2}
s=\frac{9±9}{2} tenglamasini yeching, bunda ± manfiy. 9 dan 9 ni ayirish.
s=0
0 ni 2 ga bo'lish.
s=9 s=0
Tenglama yechildi.
s^{2}-9s=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
s^{2}-9s+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
s^{2}-9s+\frac{81}{4}=\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
\left(s-\frac{9}{2}\right)^{2}=\frac{81}{4}
s^{2}-9s+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(s-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
s-\frac{9}{2}=\frac{9}{2} s-\frac{9}{2}=-\frac{9}{2}
Qisqartirish.
s=9 s=0
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.