s uchun yechish
s=2\sqrt{231}\approx 30,397368307
s=-2\sqrt{231}\approx -30,397368307
Baham ko'rish
Klipbordga nusxa olish
2s^{2}=\left(41,7+11,1\right)\times 35
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2s^{2}=52,8\times 35
52,8 olish uchun 41,7 va 11,1'ni qo'shing.
2s^{2}=1848
1848 hosil qilish uchun 52,8 va 35 ni ko'paytirish.
s^{2}=\frac{1848}{2}
Ikki tarafini 2 ga bo‘ling.
s^{2}=924
924 ni olish uchun 1848 ni 2 ga bo‘ling.
s=2\sqrt{231} s=-2\sqrt{231}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
2s^{2}=\left(41.7+11.1\right)\times 35
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2s^{2}=52.8\times 35
52.8 olish uchun 41.7 va 11.1'ni qo'shing.
2s^{2}=1848
1848 hosil qilish uchun 52.8 va 35 ni ko'paytirish.
2s^{2}-1848=0
Ikkala tarafdan 1848 ni ayirish.
s=\frac{0±\sqrt{0^{2}-4\times 2\left(-1848\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -1848 ni c bilan almashtiring.
s=\frac{0±\sqrt{-4\times 2\left(-1848\right)}}{2\times 2}
0 kvadratini chiqarish.
s=\frac{0±\sqrt{-8\left(-1848\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
s=\frac{0±\sqrt{14784}}{2\times 2}
-8 ni -1848 marotabaga ko'paytirish.
s=\frac{0±8\sqrt{231}}{2\times 2}
14784 ning kvadrat ildizini chiqarish.
s=\frac{0±8\sqrt{231}}{4}
2 ni 2 marotabaga ko'paytirish.
s=2\sqrt{231}
s=\frac{0±8\sqrt{231}}{4} tenglamasini yeching, bunda ± musbat.
s=-2\sqrt{231}
s=\frac{0±8\sqrt{231}}{4} tenglamasini yeching, bunda ± manfiy.
s=2\sqrt{231} s=-2\sqrt{231}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}