Asosiy tarkibga oʻtish
r uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

r^{2}-22r-7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
r=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-7\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -22 ni b va -7 ni c bilan almashtiring.
r=\frac{-\left(-22\right)±\sqrt{484-4\left(-7\right)}}{2}
-22 kvadratini chiqarish.
r=\frac{-\left(-22\right)±\sqrt{484+28}}{2}
-4 ni -7 marotabaga ko'paytirish.
r=\frac{-\left(-22\right)±\sqrt{512}}{2}
484 ni 28 ga qo'shish.
r=\frac{-\left(-22\right)±16\sqrt{2}}{2}
512 ning kvadrat ildizini chiqarish.
r=\frac{22±16\sqrt{2}}{2}
-22 ning teskarisi 22 ga teng.
r=\frac{16\sqrt{2}+22}{2}
r=\frac{22±16\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 22 ni 16\sqrt{2} ga qo'shish.
r=8\sqrt{2}+11
22+16\sqrt{2} ni 2 ga bo'lish.
r=\frac{22-16\sqrt{2}}{2}
r=\frac{22±16\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 22 dan 16\sqrt{2} ni ayirish.
r=11-8\sqrt{2}
22-16\sqrt{2} ni 2 ga bo'lish.
r=8\sqrt{2}+11 r=11-8\sqrt{2}
Tenglama yechildi.
r^{2}-22r-7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
r^{2}-22r-7-\left(-7\right)=-\left(-7\right)
7 ni tenglamaning ikkala tarafiga qo'shish.
r^{2}-22r=-\left(-7\right)
O‘zidan -7 ayirilsa 0 qoladi.
r^{2}-22r=7
0 dan -7 ni ayirish.
r^{2}-22r+\left(-11\right)^{2}=7+\left(-11\right)^{2}
-22 ni bo‘lish, x shartining koeffitsienti, 2 ga -11 olish uchun. Keyin, -11 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
r^{2}-22r+121=7+121
-11 kvadratini chiqarish.
r^{2}-22r+121=128
7 ni 121 ga qo'shish.
\left(r-11\right)^{2}=128
r^{2}-22r+121 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(r-11\right)^{2}}=\sqrt{128}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
r-11=8\sqrt{2} r-11=-8\sqrt{2}
Qisqartirish.
r=8\sqrt{2}+11 r=11-8\sqrt{2}
11 ni tenglamaning ikkala tarafiga qo'shish.