Asosiy tarkibga oʻtish
r uchun yechish
Tick mark Image
A uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

r^{2}=\left(\sqrt{\left(r-2\right)^{2}+A^{2}}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
r^{2}=\left(\sqrt{r^{2}-4r+4+A^{2}}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(r-2\right)^{2} kengaytirilishi uchun ishlating.
r^{2}=r^{2}-4r+4+A^{2}
2 daraja ko‘rsatkichini \sqrt{r^{2}-4r+4+A^{2}} ga hisoblang va r^{2}-4r+4+A^{2} ni qiymatni oling.
r^{2}-r^{2}=-4r+4+A^{2}
Ikkala tarafdan r^{2} ni ayirish.
0=-4r+4+A^{2}
0 ni olish uchun r^{2} va -r^{2} ni birlashtirish.
-4r+4+A^{2}=0
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-4r+A^{2}=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-4r=-4-A^{2}
Ikkala tarafdan A^{2} ni ayirish.
-4r=-A^{2}-4
Tenglama standart shaklda.
\frac{-4r}{-4}=\frac{-A^{2}-4}{-4}
Ikki tarafini -4 ga bo‘ling.
r=\frac{-A^{2}-4}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
r=\frac{A^{2}}{4}+1
-4-A^{2} ni -4 ga bo'lish.
\frac{A^{2}}{4}+1=\sqrt{\left(\frac{A^{2}}{4}+1-2\right)^{2}+A^{2}}
r=\sqrt{\left(r-2\right)^{2}+A^{2}} tenglamasida r uchun \frac{A^{2}}{4}+1 ni almashtiring.
\frac{1}{4}A^{2}+1=\frac{1}{4}\left(16+8A^{2}+A^{4}\right)^{\frac{1}{2}}
Qisqartirish. r=\frac{A^{2}}{4}+1 tenglamani qoniqtiradi.
r=\frac{A^{2}}{4}+1
r=\sqrt{\left(r-2\right)^{2}+A^{2}} tenglamasi noyob yechimga ega.