d uchun yechish
\left\{\begin{matrix}\\d=2\pi \approx 6,283185307\text{, }&\text{unconditionally}\\d\neq 0\text{, }&r=0\end{matrix}\right,
r uchun yechish
\left\{\begin{matrix}r=0\text{, }&d\neq 0\\r\in \mathrm{R}\text{, }&d=2\pi \end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
rd=2\pi r
d qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini d ga ko'paytirish.
\frac{rd}{r}=\frac{2\pi r}{r}
Ikki tarafini r ga bo‘ling.
d=\frac{2\pi r}{r}
r ga bo'lish r ga ko'paytirishni bekor qiladi.
d=2\pi
2\pi r ni r ga bo'lish.
d=2\pi \text{, }d\neq 0
d qiymati 0 teng bo‘lmaydi.
r-\frac{2\pi r}{d}=0
Ikkala tarafdan \frac{2\pi r}{d} ni ayirish.
\frac{rd}{d}-\frac{2\pi r}{d}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. r ni \frac{d}{d} marotabaga ko'paytirish.
\frac{rd-2\pi r}{d}=0
\frac{rd}{d} va \frac{2\pi r}{d} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{rd-2r\pi }{d}=0
rd-2\pi r ichidagi ko‘paytirishlarni bajaring.
rd-2r\pi =0
Tenglamaning ikkala tarafini d ga ko'paytirish.
\left(d-2\pi \right)r=0
r'ga ega bo'lgan barcha shartlarni birlashtirish.
r=0
0 ni -2\pi +d ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}