q uchun yechish
q=\sqrt{7}+4\approx 6,645751311
q=4-\sqrt{7}\approx 1,354248689
Baham ko'rish
Klipbordga nusxa olish
q^{2}-8q+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
q=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 9 ni c bilan almashtiring.
q=\frac{-\left(-8\right)±\sqrt{64-4\times 9}}{2}
-8 kvadratini chiqarish.
q=\frac{-\left(-8\right)±\sqrt{64-36}}{2}
-4 ni 9 marotabaga ko'paytirish.
q=\frac{-\left(-8\right)±\sqrt{28}}{2}
64 ni -36 ga qo'shish.
q=\frac{-\left(-8\right)±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
q=\frac{8±2\sqrt{7}}{2}
-8 ning teskarisi 8 ga teng.
q=\frac{2\sqrt{7}+8}{2}
q=\frac{8±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{7} ga qo'shish.
q=\sqrt{7}+4
8+2\sqrt{7} ni 2 ga bo'lish.
q=\frac{8-2\sqrt{7}}{2}
q=\frac{8±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{7} ni ayirish.
q=4-\sqrt{7}
8-2\sqrt{7} ni 2 ga bo'lish.
q=\sqrt{7}+4 q=4-\sqrt{7}
Tenglama yechildi.
q^{2}-8q+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
q^{2}-8q+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
q^{2}-8q=-9
O‘zidan 9 ayirilsa 0 qoladi.
q^{2}-8q+\left(-4\right)^{2}=-9+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}-8q+16=-9+16
-4 kvadratini chiqarish.
q^{2}-8q+16=7
-9 ni 16 ga qo'shish.
\left(q-4\right)^{2}=7
q^{2}-8q+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q-4\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q-4=\sqrt{7} q-4=-\sqrt{7}
Qisqartirish.
q=\sqrt{7}+4 q=4-\sqrt{7}
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}