q uchun yechish
q=18
q=0
Baham ko'rish
Klipbordga nusxa olish
q^{2}-36q+540-3q^{2}=-72q+540
Ikkala tarafdan 3q^{2} ni ayirish.
-2q^{2}-36q+540=-72q+540
-2q^{2} ni olish uchun q^{2} va -3q^{2} ni birlashtirish.
-2q^{2}-36q+540+72q=540
72q ni ikki tarafga qo’shing.
-2q^{2}+36q+540=540
36q ni olish uchun -36q va 72q ni birlashtirish.
-2q^{2}+36q+540-540=0
Ikkala tarafdan 540 ni ayirish.
-2q^{2}+36q=0
0 olish uchun 540 dan 540 ni ayirish.
q\left(-2q+36\right)=0
q omili.
q=0 q=18
Tenglamani yechish uchun q=0 va -2q+36=0 ni yeching.
q^{2}-36q+540-3q^{2}=-72q+540
Ikkala tarafdan 3q^{2} ni ayirish.
-2q^{2}-36q+540=-72q+540
-2q^{2} ni olish uchun q^{2} va -3q^{2} ni birlashtirish.
-2q^{2}-36q+540+72q=540
72q ni ikki tarafga qo’shing.
-2q^{2}+36q+540=540
36q ni olish uchun -36q va 72q ni birlashtirish.
-2q^{2}+36q+540-540=0
Ikkala tarafdan 540 ni ayirish.
-2q^{2}+36q=0
0 olish uchun 540 dan 540 ni ayirish.
q=\frac{-36±\sqrt{36^{2}}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 36 ni b va 0 ni c bilan almashtiring.
q=\frac{-36±36}{2\left(-2\right)}
36^{2} ning kvadrat ildizini chiqarish.
q=\frac{-36±36}{-4}
2 ni -2 marotabaga ko'paytirish.
q=\frac{0}{-4}
q=\frac{-36±36}{-4} tenglamasini yeching, bunda ± musbat. -36 ni 36 ga qo'shish.
q=0
0 ni -4 ga bo'lish.
q=-\frac{72}{-4}
q=\frac{-36±36}{-4} tenglamasini yeching, bunda ± manfiy. -36 dan 36 ni ayirish.
q=18
-72 ni -4 ga bo'lish.
q=0 q=18
Tenglama yechildi.
q^{2}-36q+540-3q^{2}=-72q+540
Ikkala tarafdan 3q^{2} ni ayirish.
-2q^{2}-36q+540=-72q+540
-2q^{2} ni olish uchun q^{2} va -3q^{2} ni birlashtirish.
-2q^{2}-36q+540+72q=540
72q ni ikki tarafga qo’shing.
-2q^{2}+36q+540=540
36q ni olish uchun -36q va 72q ni birlashtirish.
-2q^{2}+36q=540-540
Ikkala tarafdan 540 ni ayirish.
-2q^{2}+36q=0
0 olish uchun 540 dan 540 ni ayirish.
\frac{-2q^{2}+36q}{-2}=\frac{0}{-2}
Ikki tarafini -2 ga bo‘ling.
q^{2}+\frac{36}{-2}q=\frac{0}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
q^{2}-18q=\frac{0}{-2}
36 ni -2 ga bo'lish.
q^{2}-18q=0
0 ni -2 ga bo'lish.
q^{2}-18q+\left(-9\right)^{2}=\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}-18q+81=81
-9 kvadratini chiqarish.
\left(q-9\right)^{2}=81
q^{2}-18q+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q-9\right)^{2}}=\sqrt{81}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q-9=9 q-9=-9
Qisqartirish.
q=18 q=0
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}