q uchun yechish (complex solution)
q=\sqrt{22}-3\approx 1,69041576
q=-\left(\sqrt{22}+3\right)\approx -7,69041576
q uchun yechish
q=\sqrt{22}-3\approx 1,69041576
q=-\sqrt{22}-3\approx -7,69041576
Baham ko'rish
Klipbordga nusxa olish
q^{2}+6q-18=-5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
q^{2}+6q-18-\left(-5\right)=0
O‘zidan -5 ayirilsa 0 qoladi.
q^{2}+6q-13=0
-18 dan -5 ni ayirish.
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -13 ni c bilan almashtiring.
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 kvadratini chiqarish.
q=\frac{-6±\sqrt{36+52}}{2}
-4 ni -13 marotabaga ko'paytirish.
q=\frac{-6±\sqrt{88}}{2}
36 ni 52 ga qo'shish.
q=\frac{-6±2\sqrt{22}}{2}
88 ning kvadrat ildizini chiqarish.
q=\frac{2\sqrt{22}-6}{2}
q=\frac{-6±2\sqrt{22}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{22} ga qo'shish.
q=\sqrt{22}-3
-6+2\sqrt{22} ni 2 ga bo'lish.
q=\frac{-2\sqrt{22}-6}{2}
q=\frac{-6±2\sqrt{22}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{22} ni ayirish.
q=-\sqrt{22}-3
-6-2\sqrt{22} ni 2 ga bo'lish.
q=\sqrt{22}-3 q=-\sqrt{22}-3
Tenglama yechildi.
q^{2}+6q-18=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
18 ni tenglamaning ikkala tarafiga qo'shish.
q^{2}+6q=-5-\left(-18\right)
O‘zidan -18 ayirilsa 0 qoladi.
q^{2}+6q=13
-5 dan -18 ni ayirish.
q^{2}+6q+3^{2}=13+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}+6q+9=13+9
3 kvadratini chiqarish.
q^{2}+6q+9=22
13 ni 9 ga qo'shish.
\left(q+3\right)^{2}=22
q^{2}+6q+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q+3=\sqrt{22} q+3=-\sqrt{22}
Qisqartirish.
q=\sqrt{22}-3 q=-\sqrt{22}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
q^{2}+6q-18=-5
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
q^{2}+6q-18-\left(-5\right)=-5-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
q^{2}+6q-18-\left(-5\right)=0
O‘zidan -5 ayirilsa 0 qoladi.
q^{2}+6q-13=0
-18 dan -5 ni ayirish.
q=\frac{-6±\sqrt{6^{2}-4\left(-13\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -13 ni c bilan almashtiring.
q=\frac{-6±\sqrt{36-4\left(-13\right)}}{2}
6 kvadratini chiqarish.
q=\frac{-6±\sqrt{36+52}}{2}
-4 ni -13 marotabaga ko'paytirish.
q=\frac{-6±\sqrt{88}}{2}
36 ni 52 ga qo'shish.
q=\frac{-6±2\sqrt{22}}{2}
88 ning kvadrat ildizini chiqarish.
q=\frac{2\sqrt{22}-6}{2}
q=\frac{-6±2\sqrt{22}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{22} ga qo'shish.
q=\sqrt{22}-3
-6+2\sqrt{22} ni 2 ga bo'lish.
q=\frac{-2\sqrt{22}-6}{2}
q=\frac{-6±2\sqrt{22}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{22} ni ayirish.
q=-\sqrt{22}-3
-6-2\sqrt{22} ni 2 ga bo'lish.
q=\sqrt{22}-3 q=-\sqrt{22}-3
Tenglama yechildi.
q^{2}+6q-18=-5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
q^{2}+6q-18-\left(-18\right)=-5-\left(-18\right)
18 ni tenglamaning ikkala tarafiga qo'shish.
q^{2}+6q=-5-\left(-18\right)
O‘zidan -18 ayirilsa 0 qoladi.
q^{2}+6q=13
-5 dan -18 ni ayirish.
q^{2}+6q+3^{2}=13+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
q^{2}+6q+9=13+9
3 kvadratini chiqarish.
q^{2}+6q+9=22
13 ni 9 ga qo'shish.
\left(q+3\right)^{2}=22
q^{2}+6q+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(q+3\right)^{2}}=\sqrt{22}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
q+3=\sqrt{22} q+3=-\sqrt{22}
Qisqartirish.
q=\sqrt{22}-3 q=-\sqrt{22}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}