Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-5x^{2}-10x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-40}}{2\left(-5\right)}
20 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{60}}{2\left(-5\right)}
100 ni -40 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{15}}{2\left(-5\right)}
60 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{15}}{2\left(-5\right)}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{15}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{2\sqrt{15}+10}{-10}
x=\frac{10±2\sqrt{15}}{-10} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{15} ga qo'shish.
x=-\frac{\sqrt{15}}{5}-1
10+2\sqrt{15} ni -10 ga bo'lish.
x=\frac{10-2\sqrt{15}}{-10}
x=\frac{10±2\sqrt{15}}{-10} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{15} ni ayirish.
x=\frac{\sqrt{15}}{5}-1
10-2\sqrt{15} ni -10 ga bo'lish.
-5x^{2}-10x-2=-5\left(x-\left(-\frac{\sqrt{15}}{5}-1\right)\right)\left(x-\left(\frac{\sqrt{15}}{5}-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -1-\frac{\sqrt{15}}{5} ga va x_{2} uchun -1+\frac{\sqrt{15}}{5} ga bo‘ling.