Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

p^{2}+p-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-1±\sqrt{1^{2}-4\left(-4\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -4 ni c bilan almashtiring.
p=\frac{-1±\sqrt{1-4\left(-4\right)}}{2}
1 kvadratini chiqarish.
p=\frac{-1±\sqrt{1+16}}{2}
-4 ni -4 marotabaga ko'paytirish.
p=\frac{-1±\sqrt{17}}{2}
1 ni 16 ga qo'shish.
p=\frac{\sqrt{17}-1}{2}
p=\frac{-1±\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{17} ga qo'shish.
p=\frac{-\sqrt{17}-1}{2}
p=\frac{-1±\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{17} ni ayirish.
p=\frac{\sqrt{17}-1}{2} p=\frac{-\sqrt{17}-1}{2}
Tenglama yechildi.
p^{2}+p-4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
p^{2}+p-4-\left(-4\right)=-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
p^{2}+p=-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
p^{2}+p=4
0 dan -4 ni ayirish.
p^{2}+p+\left(\frac{1}{2}\right)^{2}=4+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}+p+\frac{1}{4}=4+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
p^{2}+p+\frac{1}{4}=\frac{17}{4}
4 ni \frac{1}{4} ga qo'shish.
\left(p+\frac{1}{2}\right)^{2}=\frac{17}{4}
p^{2}+p+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p+\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p+\frac{1}{2}=\frac{\sqrt{17}}{2} p+\frac{1}{2}=-\frac{\sqrt{17}}{2}
Qisqartirish.
p=\frac{\sqrt{17}-1}{2} p=\frac{-\sqrt{17}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.