p uchun yechish
p=\sqrt{385}+19\approx 38,62141687
p=19-\sqrt{385}\approx -0,62141687
Baham ko'rish
Klipbordga nusxa olish
p^{2}-38p-24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\left(-24\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -38 ni b va -24 ni c bilan almashtiring.
p=\frac{-\left(-38\right)±\sqrt{1444-4\left(-24\right)}}{2}
-38 kvadratini chiqarish.
p=\frac{-\left(-38\right)±\sqrt{1444+96}}{2}
-4 ni -24 marotabaga ko'paytirish.
p=\frac{-\left(-38\right)±\sqrt{1540}}{2}
1444 ni 96 ga qo'shish.
p=\frac{-\left(-38\right)±2\sqrt{385}}{2}
1540 ning kvadrat ildizini chiqarish.
p=\frac{38±2\sqrt{385}}{2}
-38 ning teskarisi 38 ga teng.
p=\frac{2\sqrt{385}+38}{2}
p=\frac{38±2\sqrt{385}}{2} tenglamasini yeching, bunda ± musbat. 38 ni 2\sqrt{385} ga qo'shish.
p=\sqrt{385}+19
38+2\sqrt{385} ni 2 ga bo'lish.
p=\frac{38-2\sqrt{385}}{2}
p=\frac{38±2\sqrt{385}}{2} tenglamasini yeching, bunda ± manfiy. 38 dan 2\sqrt{385} ni ayirish.
p=19-\sqrt{385}
38-2\sqrt{385} ni 2 ga bo'lish.
p=\sqrt{385}+19 p=19-\sqrt{385}
Tenglama yechildi.
p^{2}-38p-24=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
p^{2}-38p-24-\left(-24\right)=-\left(-24\right)
24 ni tenglamaning ikkala tarafiga qo'shish.
p^{2}-38p=-\left(-24\right)
O‘zidan -24 ayirilsa 0 qoladi.
p^{2}-38p=24
0 dan -24 ni ayirish.
p^{2}-38p+\left(-19\right)^{2}=24+\left(-19\right)^{2}
-38 ni bo‘lish, x shartining koeffitsienti, 2 ga -19 olish uchun. Keyin, -19 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-38p+361=24+361
-19 kvadratini chiqarish.
p^{2}-38p+361=385
24 ni 361 ga qo'shish.
\left(p-19\right)^{2}=385
p^{2}-38p+361 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-19\right)^{2}}=\sqrt{385}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-19=\sqrt{385} p-19=-\sqrt{385}
Qisqartirish.
p=\sqrt{385}+19 p=19-\sqrt{385}
19 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}