p uchun yechish
p=-2
p=4
Baham ko'rish
Klipbordga nusxa olish
\left(p-3\right)p+\left(p-3\right)\times 2=p+2
p qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p-3 ga ko'paytirish.
p^{2}-3p+\left(p-3\right)\times 2=p+2
p-3 ga p ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p^{2}-3p+2p-6=p+2
p-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p^{2}-p-6=p+2
-p ni olish uchun -3p va 2p ni birlashtirish.
p^{2}-p-6-p=2
Ikkala tarafdan p ni ayirish.
p^{2}-2p-6=2
-2p ni olish uchun -p va -p ni birlashtirish.
p^{2}-2p-6-2=0
Ikkala tarafdan 2 ni ayirish.
p^{2}-2p-8=0
-8 olish uchun -6 dan 2 ni ayirish.
p=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -8 ni c bilan almashtiring.
p=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
-2 kvadratini chiqarish.
p=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
-4 ni -8 marotabaga ko'paytirish.
p=\frac{-\left(-2\right)±\sqrt{36}}{2}
4 ni 32 ga qo'shish.
p=\frac{-\left(-2\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
p=\frac{2±6}{2}
-2 ning teskarisi 2 ga teng.
p=\frac{8}{2}
p=\frac{2±6}{2} tenglamasini yeching, bunda ± musbat. 2 ni 6 ga qo'shish.
p=4
8 ni 2 ga bo'lish.
p=-\frac{4}{2}
p=\frac{2±6}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 6 ni ayirish.
p=-2
-4 ni 2 ga bo'lish.
p=4 p=-2
Tenglama yechildi.
\left(p-3\right)p+\left(p-3\right)\times 2=p+2
p qiymati 3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini p-3 ga ko'paytirish.
p^{2}-3p+\left(p-3\right)\times 2=p+2
p-3 ga p ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p^{2}-3p+2p-6=p+2
p-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
p^{2}-p-6=p+2
-p ni olish uchun -3p va 2p ni birlashtirish.
p^{2}-p-6-p=2
Ikkala tarafdan p ni ayirish.
p^{2}-2p-6=2
-2p ni olish uchun -p va -p ni birlashtirish.
p^{2}-2p=2+6
6 ni ikki tarafga qo’shing.
p^{2}-2p=8
8 olish uchun 2 va 6'ni qo'shing.
p^{2}-2p+1=8+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-2p+1=9
8 ni 1 ga qo'shish.
\left(p-1\right)^{2}=9
p^{2}-2p+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-1\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-1=3 p-1=-3
Qisqartirish.
p=4 p=-2
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}