n_2 uchun yechish
n_{2}=\frac{2x+5}{x+3}
x\neq -3
x uchun yechish
x=-\frac{3n_{2}-5}{n_{2}-2}
n_{2}\neq 2
Grafik
Baham ko'rish
Klipbordga nusxa olish
n_{2}x+3n_{2}-\left(2x-7\right)=12
n_{2} ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n_{2}x+3n_{2}-2x+7=12
2x-7 teskarisini topish uchun har birining teskarisini toping.
n_{2}x+3n_{2}+7=12+2x
2x ni ikki tarafga qo’shing.
n_{2}x+3n_{2}=12+2x-7
Ikkala tarafdan 7 ni ayirish.
n_{2}x+3n_{2}=5+2x
5 olish uchun 12 dan 7 ni ayirish.
\left(x+3\right)n_{2}=5+2x
n_{2}'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(x+3\right)n_{2}=2x+5
Tenglama standart shaklda.
\frac{\left(x+3\right)n_{2}}{x+3}=\frac{2x+5}{x+3}
Ikki tarafini x+3 ga bo‘ling.
n_{2}=\frac{2x+5}{x+3}
x+3 ga bo'lish x+3 ga ko'paytirishni bekor qiladi.
n_{2}x+3n_{2}-\left(2x-7\right)=12
n_{2} ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n_{2}x+3n_{2}-2x+7=12
2x-7 teskarisini topish uchun har birining teskarisini toping.
n_{2}x-2x+7=12-3n_{2}
Ikkala tarafdan 3n_{2} ni ayirish.
n_{2}x-2x=12-3n_{2}-7
Ikkala tarafdan 7 ni ayirish.
n_{2}x-2x=5-3n_{2}
5 olish uchun 12 dan 7 ni ayirish.
\left(n_{2}-2\right)x=5-3n_{2}
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(n_{2}-2\right)x}{n_{2}-2}=\frac{5-3n_{2}}{n_{2}-2}
Ikki tarafini n_{2}-2 ga bo‘ling.
x=\frac{5-3n_{2}}{n_{2}-2}
n_{2}-2 ga bo'lish n_{2}-2 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}