Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+n-2048=0
n ga n+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n=\frac{-1±\sqrt{1^{2}-4\left(-2048\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -2048 ni c bilan almashtiring.
n=\frac{-1±\sqrt{1-4\left(-2048\right)}}{2}
1 kvadratini chiqarish.
n=\frac{-1±\sqrt{1+8192}}{2}
-4 ni -2048 marotabaga ko'paytirish.
n=\frac{-1±\sqrt{8193}}{2}
1 ni 8192 ga qo'shish.
n=\frac{\sqrt{8193}-1}{2}
n=\frac{-1±\sqrt{8193}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{8193} ga qo'shish.
n=\frac{-\sqrt{8193}-1}{2}
n=\frac{-1±\sqrt{8193}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{8193} ni ayirish.
n=\frac{\sqrt{8193}-1}{2} n=\frac{-\sqrt{8193}-1}{2}
Tenglama yechildi.
n^{2}+n-2048=0
n ga n+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n^{2}+n=2048
2048 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=2048+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+n+\frac{1}{4}=2048+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
n^{2}+n+\frac{1}{4}=\frac{8193}{4}
2048 ni \frac{1}{4} ga qo'shish.
\left(n+\frac{1}{2}\right)^{2}=\frac{8193}{4}
n^{2}+n+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{8193}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{1}{2}=\frac{\sqrt{8193}}{2} n+\frac{1}{2}=-\frac{\sqrt{8193}}{2}
Qisqartirish.
n=\frac{\sqrt{8193}-1}{2} n=\frac{-\sqrt{8193}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.