n uchun yechish
n=\frac{-5+\sqrt{11}i}{9}\approx -0,555555556+0,368513866i
n=\frac{-\sqrt{11}i-5}{9}\approx -0,555555556-0,368513866i
Baham ko'rish
Klipbordga nusxa olish
9n^{2}+10n+4=0
n ga 9n+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n=\frac{-10±\sqrt{10^{2}-4\times 9\times 4}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 10 ni b va 4 ni c bilan almashtiring.
n=\frac{-10±\sqrt{100-4\times 9\times 4}}{2\times 9}
10 kvadratini chiqarish.
n=\frac{-10±\sqrt{100-36\times 4}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
n=\frac{-10±\sqrt{100-144}}{2\times 9}
-36 ni 4 marotabaga ko'paytirish.
n=\frac{-10±\sqrt{-44}}{2\times 9}
100 ni -144 ga qo'shish.
n=\frac{-10±2\sqrt{11}i}{2\times 9}
-44 ning kvadrat ildizini chiqarish.
n=\frac{-10±2\sqrt{11}i}{18}
2 ni 9 marotabaga ko'paytirish.
n=\frac{-10+2\sqrt{11}i}{18}
n=\frac{-10±2\sqrt{11}i}{18} tenglamasini yeching, bunda ± musbat. -10 ni 2i\sqrt{11} ga qo'shish.
n=\frac{-5+\sqrt{11}i}{9}
-10+2i\sqrt{11} ni 18 ga bo'lish.
n=\frac{-2\sqrt{11}i-10}{18}
n=\frac{-10±2\sqrt{11}i}{18} tenglamasini yeching, bunda ± manfiy. -10 dan 2i\sqrt{11} ni ayirish.
n=\frac{-\sqrt{11}i-5}{9}
-10-2i\sqrt{11} ni 18 ga bo'lish.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Tenglama yechildi.
9n^{2}+10n+4=0
n ga 9n+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9n^{2}+10n=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{9n^{2}+10n}{9}=-\frac{4}{9}
Ikki tarafini 9 ga bo‘ling.
n^{2}+\frac{10}{9}n=-\frac{4}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{10}{9}n+\left(\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(\frac{5}{9}\right)^{2}
\frac{10}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{9} olish uchun. Keyin, \frac{5}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{9} kvadratini chiqarish.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{11}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{9} ni \frac{25}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n+\frac{5}{9}\right)^{2}=-\frac{11}{81}
n^{2}+\frac{10}{9}n+\frac{25}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{5}{9}=\frac{\sqrt{11}i}{9} n+\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Qisqartirish.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Tenglamaning ikkala tarafidan \frac{5}{9} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}