Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9n^{2}+10n+4=0
n ga 9n+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
n=\frac{-10±\sqrt{10^{2}-4\times 9\times 4}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 10 ni b va 4 ni c bilan almashtiring.
n=\frac{-10±\sqrt{100-4\times 9\times 4}}{2\times 9}
10 kvadratini chiqarish.
n=\frac{-10±\sqrt{100-36\times 4}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
n=\frac{-10±\sqrt{100-144}}{2\times 9}
-36 ni 4 marotabaga ko'paytirish.
n=\frac{-10±\sqrt{-44}}{2\times 9}
100 ni -144 ga qo'shish.
n=\frac{-10±2\sqrt{11}i}{2\times 9}
-44 ning kvadrat ildizini chiqarish.
n=\frac{-10±2\sqrt{11}i}{18}
2 ni 9 marotabaga ko'paytirish.
n=\frac{-10+2\sqrt{11}i}{18}
n=\frac{-10±2\sqrt{11}i}{18} tenglamasini yeching, bunda ± musbat. -10 ni 2i\sqrt{11} ga qo'shish.
n=\frac{-5+\sqrt{11}i}{9}
-10+2i\sqrt{11} ni 18 ga bo'lish.
n=\frac{-2\sqrt{11}i-10}{18}
n=\frac{-10±2\sqrt{11}i}{18} tenglamasini yeching, bunda ± manfiy. -10 dan 2i\sqrt{11} ni ayirish.
n=\frac{-\sqrt{11}i-5}{9}
-10-2i\sqrt{11} ni 18 ga bo'lish.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Tenglama yechildi.
9n^{2}+10n+4=0
n ga 9n+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9n^{2}+10n=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{9n^{2}+10n}{9}=-\frac{4}{9}
Ikki tarafini 9 ga bo‘ling.
n^{2}+\frac{10}{9}n=-\frac{4}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{10}{9}n+\left(\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(\frac{5}{9}\right)^{2}
\frac{10}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{9} olish uchun. Keyin, \frac{5}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{9} kvadratini chiqarish.
n^{2}+\frac{10}{9}n+\frac{25}{81}=-\frac{11}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{9} ni \frac{25}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n+\frac{5}{9}\right)^{2}=-\frac{11}{81}
n^{2}+\frac{10}{9}n+\frac{25}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{5}{9}=\frac{\sqrt{11}i}{9} n+\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Qisqartirish.
n=\frac{-5+\sqrt{11}i}{9} n=\frac{-\sqrt{11}i-5}{9}
Tenglamaning ikkala tarafidan \frac{5}{9} ni ayirish.