Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}-n-1454=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-1454\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-1\right)±\sqrt{1+5816}}{2}
-4 ni -1454 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{5817}}{2}
1 ni 5816 ga qo'shish.
n=\frac{1±\sqrt{5817}}{2}
-1 ning teskarisi 1 ga teng.
n=\frac{\sqrt{5817}+1}{2}
n=\frac{1±\sqrt{5817}}{2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{5817} ga qo'shish.
n=\frac{1-\sqrt{5817}}{2}
n=\frac{1±\sqrt{5817}}{2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{5817} ni ayirish.
n^{2}-n-1454=\left(n-\frac{\sqrt{5817}+1}{2}\right)\left(n-\frac{1-\sqrt{5817}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{5817}}{2} ga va x_{2} uchun \frac{1-\sqrt{5817}}{2} ga bo‘ling.