Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}-4019n+4036081=0
2 daraja ko‘rsatkichini 2009 ga hisoblang va 4036081 ni qiymatni oling.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 4036081}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4019 ni b va 4036081 ni c bilan almashtiring.
n=\frac{-\left(-4019\right)±\sqrt{16152361-4\times 4036081}}{2}
-4019 kvadratini chiqarish.
n=\frac{-\left(-4019\right)±\sqrt{16152361-16144324}}{2}
-4 ni 4036081 marotabaga ko'paytirish.
n=\frac{-\left(-4019\right)±\sqrt{8037}}{2}
16152361 ni -16144324 ga qo'shish.
n=\frac{-\left(-4019\right)±3\sqrt{893}}{2}
8037 ning kvadrat ildizini chiqarish.
n=\frac{4019±3\sqrt{893}}{2}
-4019 ning teskarisi 4019 ga teng.
n=\frac{3\sqrt{893}+4019}{2}
n=\frac{4019±3\sqrt{893}}{2} tenglamasini yeching, bunda ± musbat. 4019 ni 3\sqrt{893} ga qo'shish.
n=\frac{4019-3\sqrt{893}}{2}
n=\frac{4019±3\sqrt{893}}{2} tenglamasini yeching, bunda ± manfiy. 4019 dan 3\sqrt{893} ni ayirish.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Tenglama yechildi.
n^{2}-4019n+4036081=0
2 daraja ko‘rsatkichini 2009 ga hisoblang va 4036081 ni qiymatni oling.
n^{2}-4019n=-4036081
Ikkala tarafdan 4036081 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
n^{2}-4019n+\left(-\frac{4019}{2}\right)^{2}=-4036081+\left(-\frac{4019}{2}\right)^{2}
-4019 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4019}{2} olish uchun. Keyin, -\frac{4019}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-4019n+\frac{16152361}{4}=-4036081+\frac{16152361}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4019}{2} kvadratini chiqarish.
n^{2}-4019n+\frac{16152361}{4}=\frac{8037}{4}
-4036081 ni \frac{16152361}{4} ga qo'shish.
\left(n-\frac{4019}{2}\right)^{2}=\frac{8037}{4}
n^{2}-4019n+\frac{16152361}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{4019}{2}\right)^{2}}=\sqrt{\frac{8037}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{4019}{2}=\frac{3\sqrt{893}}{2} n-\frac{4019}{2}=-\frac{3\sqrt{893}}{2}
Qisqartirish.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
\frac{4019}{2} ni tenglamaning ikkala tarafiga qo'shish.