Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}-25n-144=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-144\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-25\right)±\sqrt{625-4\left(-144\right)}}{2}
-25 kvadratini chiqarish.
n=\frac{-\left(-25\right)±\sqrt{625+576}}{2}
-4 ni -144 marotabaga ko'paytirish.
n=\frac{-\left(-25\right)±\sqrt{1201}}{2}
625 ni 576 ga qo'shish.
n=\frac{25±\sqrt{1201}}{2}
-25 ning teskarisi 25 ga teng.
n=\frac{\sqrt{1201}+25}{2}
n=\frac{25±\sqrt{1201}}{2} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{1201} ga qo'shish.
n=\frac{25-\sqrt{1201}}{2}
n=\frac{25±\sqrt{1201}}{2} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{1201} ni ayirish.
n^{2}-25n-144=\left(n-\frac{\sqrt{1201}+25}{2}\right)\left(n-\frac{25-\sqrt{1201}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{25+\sqrt{1201}}{2} ga va x_{2} uchun \frac{25-\sqrt{1201}}{2} ga bo‘ling.