n uchun yechish
n = \frac{\sqrt{337} + 25}{2} \approx 21,678779875
n = \frac{25 - \sqrt{337}}{2} \approx 3,321220125
Baham ko'rish
Klipbordga nusxa olish
n^{2}-25n+72=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 72}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -25 ni b va 72 ni c bilan almashtiring.
n=\frac{-\left(-25\right)±\sqrt{625-4\times 72}}{2}
-25 kvadratini chiqarish.
n=\frac{-\left(-25\right)±\sqrt{625-288}}{2}
-4 ni 72 marotabaga ko'paytirish.
n=\frac{-\left(-25\right)±\sqrt{337}}{2}
625 ni -288 ga qo'shish.
n=\frac{25±\sqrt{337}}{2}
-25 ning teskarisi 25 ga teng.
n=\frac{\sqrt{337}+25}{2}
n=\frac{25±\sqrt{337}}{2} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{337} ga qo'shish.
n=\frac{25-\sqrt{337}}{2}
n=\frac{25±\sqrt{337}}{2} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{337} ni ayirish.
n=\frac{\sqrt{337}+25}{2} n=\frac{25-\sqrt{337}}{2}
Tenglama yechildi.
n^{2}-25n+72=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}-25n+72-72=-72
Tenglamaning ikkala tarafidan 72 ni ayirish.
n^{2}-25n=-72
O‘zidan 72 ayirilsa 0 qoladi.
n^{2}-25n+\left(-\frac{25}{2}\right)^{2}=-72+\left(-\frac{25}{2}\right)^{2}
-25 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{2} olish uchun. Keyin, -\frac{25}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-25n+\frac{625}{4}=-72+\frac{625}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{2} kvadratini chiqarish.
n^{2}-25n+\frac{625}{4}=\frac{337}{4}
-72 ni \frac{625}{4} ga qo'shish.
\left(n-\frac{25}{2}\right)^{2}=\frac{337}{4}
n^{2}-25n+\frac{625}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{25}{2}\right)^{2}}=\sqrt{\frac{337}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{25}{2}=\frac{\sqrt{337}}{2} n-\frac{25}{2}=-\frac{\sqrt{337}}{2}
Qisqartirish.
n=\frac{\sqrt{337}+25}{2} n=\frac{25-\sqrt{337}}{2}
\frac{25}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}