Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+n-162=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-1±\sqrt{1^{2}-4\left(-162\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -162 ni c bilan almashtiring.
n=\frac{-1±\sqrt{1-4\left(-162\right)}}{2}
1 kvadratini chiqarish.
n=\frac{-1±\sqrt{1+648}}{2}
-4 ni -162 marotabaga ko'paytirish.
n=\frac{-1±\sqrt{649}}{2}
1 ni 648 ga qo'shish.
n=\frac{\sqrt{649}-1}{2}
n=\frac{-1±\sqrt{649}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{649} ga qo'shish.
n=\frac{-\sqrt{649}-1}{2}
n=\frac{-1±\sqrt{649}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{649} ni ayirish.
n=\frac{\sqrt{649}-1}{2} n=\frac{-\sqrt{649}-1}{2}
Tenglama yechildi.
n^{2}+n-162=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+n-162-\left(-162\right)=-\left(-162\right)
162 ni tenglamaning ikkala tarafiga qo'shish.
n^{2}+n=-\left(-162\right)
O‘zidan -162 ayirilsa 0 qoladi.
n^{2}+n=162
0 dan -162 ni ayirish.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=162+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+n+\frac{1}{4}=162+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
n^{2}+n+\frac{1}{4}=\frac{649}{4}
162 ni \frac{1}{4} ga qo'shish.
\left(n+\frac{1}{2}\right)^{2}=\frac{649}{4}
n^{2}+n+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{649}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{1}{2}=\frac{\sqrt{649}}{2} n+\frac{1}{2}=-\frac{\sqrt{649}}{2}
Qisqartirish.
n=\frac{\sqrt{649}-1}{2} n=\frac{-\sqrt{649}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.