n uchun yechish
n = \frac{\sqrt{409} - 1}{2} \approx 9,611874208
n=\frac{-\sqrt{409}-1}{2}\approx -10,611874208
Baham ko'rish
Klipbordga nusxa olish
n^{2}+n-102=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-1±\sqrt{1^{2}-4\left(-102\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 1 ni b va -102 ni c bilan almashtiring.
n=\frac{-1±\sqrt{1-4\left(-102\right)}}{2}
1 kvadratini chiqarish.
n=\frac{-1±\sqrt{1+408}}{2}
-4 ni -102 marotabaga ko'paytirish.
n=\frac{-1±\sqrt{409}}{2}
1 ni 408 ga qo'shish.
n=\frac{\sqrt{409}-1}{2}
n=\frac{-1±\sqrt{409}}{2} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{409} ga qo'shish.
n=\frac{-\sqrt{409}-1}{2}
n=\frac{-1±\sqrt{409}}{2} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{409} ni ayirish.
n=\frac{\sqrt{409}-1}{2} n=\frac{-\sqrt{409}-1}{2}
Tenglama yechildi.
n^{2}+n-102=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
n^{2}+n-102-\left(-102\right)=-\left(-102\right)
102 ni tenglamaning ikkala tarafiga qo'shish.
n^{2}+n=-\left(-102\right)
O‘zidan -102 ayirilsa 0 qoladi.
n^{2}+n=102
0 dan -102 ni ayirish.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=102+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+n+\frac{1}{4}=102+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
n^{2}+n+\frac{1}{4}=\frac{409}{4}
102 ni \frac{1}{4} ga qo'shish.
\left(n+\frac{1}{2}\right)^{2}=\frac{409}{4}
n^{2}+n+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{409}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{1}{2}=\frac{\sqrt{409}}{2} n+\frac{1}{2}=-\frac{\sqrt{409}}{2}
Qisqartirish.
n=\frac{\sqrt{409}-1}{2} n=\frac{-\sqrt{409}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}