Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n^{2}+9n+4=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-9±\sqrt{9^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-9±\sqrt{81-4\times 4}}{2}
9 kvadratini chiqarish.
n=\frac{-9±\sqrt{81-16}}{2}
-4 ni 4 marotabaga ko'paytirish.
n=\frac{-9±\sqrt{65}}{2}
81 ni -16 ga qo'shish.
n=\frac{\sqrt{65}-9}{2}
n=\frac{-9±\sqrt{65}}{2} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{65} ga qo'shish.
n=\frac{-\sqrt{65}-9}{2}
n=\frac{-9±\sqrt{65}}{2} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{65} ni ayirish.
n^{2}+9n+4=\left(n-\frac{\sqrt{65}-9}{2}\right)\left(n-\frac{-\sqrt{65}-9}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-9+\sqrt{65}}{2} ga va x_{2} uchun \frac{-9-\sqrt{65}}{2} ga bo‘ling.